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Abstract

I present a consumption-based asset pricing model in which the representative agent se-

lectively recalls past fundamentals that resemble current fundamentals and updates be-

liefs as if the recalled observations are all that occurred. This similarity-weighted selec-

tive memory jointly explains important facts about belief formation, survey data, and

realized asset prices. Subjective expectations overreact and are procyclical, the subjec-

tive volatility is countercyclical, and the subjective risk premium has a low volatility.

In contrast, realized returns are predictably countercyclical, highly volatile, and unre-

lated to variation of objective risk measures. My results suggest that human memory

can simultaneously account for individual-level data and aggregate asset pricing facts.

∗I especially thank Sebastian Ebert and Francesco Sangiorgi for their invaluable guidance and support. I
also thank Nicholas Barberis, Giovanni Burro, Adrian Buss, Paula Cocoma, Chukwuma Dim, Paul Fontanier,
Katrin Goedker, Andreas Grunewald, Leyla Han (discussant), Jonas Happel, Bjoern Hoeppner, Jonas Jensen,
Yigitcan Karabulut, Paul Karehnke, Heiko Karle, Emanuel Moench, Stefan Nagel (discussant), Cameron
Peng, Francesco Sannino, Paul Schmidt-Engelbertz, Frederik Schwerter, Kaushik Vasudevan, Kaspar Zim-
mermann, as well as seminar participants at the Frankfurt-Bonn-Mannheim PhD conference, the Finance
Theory Group, Frankfurt School, NFA 2024, WFA 2024, and Yale for their helpful suggestions and feed-
back. I also thank Timothy Johnson and Lars Lochstoer for sharing code with me. Part of this research
was conducted while I was at Heidelberg University and Yale, and I am grateful for the hospitality of both
institutions. Affiliation: HEC Montréal, maximilian.voigt@hec.ca.
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1 Introduction

Understanding belief formation is key to understanding asset prices. In any equilibrium, the

price of an asset reflects investor beliefs about future dividends and prices. The predominant

rational expectations approach assumes that investors understand the temporal fluctuation

of dividends and prices, but survey evidence differs markedly and systematically from ra-

tional expectations (Adam and Nagel, 2023). Evidence from the economics (Zimmermann,

2020; Charles, 2022; Gödker et al., 2022; Enke et al., 2023; Jiang et al., 2023) and psychol-

ogy literature (Schacter, 2008; Kahana, 2012) highlights the role of selective memory for

belief formation and decision making. Although recent models incorporate memory biases

to account for individual-level belief and choice puzzles (Mullainathan, 2002; Bordalo et al.,

2020b, 2023a; Wachter and Kahana, 2023), the effect of selective memory on aggregate asset

prices is largely unexplored (Malmendier and Wachter, 2022).

In this paper, I show that selective memory simultaneously explains important facts

about belief formation, survey data, and asset prices. Consistent with evidence, I model the

beliefs of a representative agent who is more likely to recall some observations than others

and treats the recalled experiences as if they were all that ever occurred (näıvete).1 Selective

memory can generate a persistent wedge between the agent’s subjective beliefs and rational

expectations. I analyze the effect of this belief wedge on asset prices using a consumption-

based asset pricing model in which the agent learns the parameters of the payoff process.

I focus on the implications of similarity-weighted memory—the selective recall of past

observations that resemble today’s observation—for beliefs and asset prices. Recent evidence

finds that similarity-weighted memory is a key mechanism of individual belief formation

(Kahana, 2012; Bordalo et al., 2020b; Enke et al., 2023; Jiang et al., 2023), and Kahana

1Theories of memory indicate that humans are more likely to recall some observations than others
(selective recall, see Schacter, 2008; Kahana, 2012), and neuronal evidence highlights that the recall of a given
observation is probabilistic (stochastic recall, see Shadlen and Shohamy, 2016). Experiments in economics
find that humans are (partially) unaware of their memory distortions (Zimmermann, 2020; Gödker et al.,
2022; Enke et al., 2023). Although my assumptions are consistent with this evidence, I do not attempt to
model the encoding and retrieval process on a neural level but focus on the effect of memory on beliefs, as
is relevant for macro-finance.
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et al. (2022) list similarity as a law of human memory. I show that subjective beliefs under

similarity-weighted memory are consistent with empirical findings. The agent expects high

growth in good times (Nagel and Xu, 2022; Bordalo et al., 2023b), expectations overreact to

news (Coibion and Gorodnichenko, 2015; Bordalo et al., 2020a), and the subjective volatility

of fundamentals is lower in good times than in bad times (Lochstoer and Muir, 2022).

Incorporating the agent’s beliefs about fundamentals under similarity-weighted memory

into the asset pricing model explains empirically observed differences of subjectively expected

and objectively realized returns. Empirically, as well as in my model, subjectively expected

returns are procyclical (Amromin and Sharpe, 2014; Greenwood and Shleifer, 2014), not

predictable by aggregate valuation ratios, and positively related to the subjectively expected

volatility (Nagel and Xu, 2023). In contrast, realized returns are countercyclical (Shiller,

1981; Mehra and Prescott, 1985), predictable by aggregate valuation ratios (Campbell and

Shiller, 1988), and do not vary with objective risk measures (Lettau and Ludvigson, 2010).

Quantitatively, the model generates a high realized risk premium and a low risk-free rate.

Beliefs under selective memory. I first show that selective memory systematically

affects the beliefs of the agent—even in the very long term—and can explain deviations from

rational expectations while retaining Bayesian learning. Throughout the analysis, I focus

on learning from an infinite sample to identify the systematic effect of selective memory

on beliefs and asset prices, and relax this assumption in simulations. Methodologically, I

characterize the beliefs of the agent under selective memory as memory-weighted likelihood

maximizers as in Fudenberg et al. (2023). The agent observes many draws from the fixed

distribution of fundamentals. Without memory distortions, the agent recalls all observations

and the histogram of recalled observations converges almost surely and uniformly to the

true distribution. With selective memory distortions, the histogram of recalled observations

reflects a memory-weighted version of the true distribution. Bayesian learning then implies

that the agent’s beliefs concentrate on distributions that maximize the likelihood of the

recalled observations. For normal distributions, I show that the agent’s posterior mean is

2



higher (lower) than the true mean if the agent is more (less) likely to recall high than low

observations; while the agent’s posterior volatility is higher (lower) than the true volatility if

the agent is more (less) likely to recall extreme observations. These results are general and

hold without a structural assumption on selective memory.

Similarity-weighted memory. I use the characterization of the agent’s beliefs to incor-

porate similarity-weighted memory into an asset pricing model. I consider a representative

agent endowment economy with Epstein and Zin (1989)-preferences. Endowment growth is

drawn from an i.i.d. two-state Markov chain with observable states as in Mehra and Prescott

(1985), whereby one state captures normal times and the other state recessions. Conditional

on the state, endowment growth is log-normally distributed. The agent learns the state-

wise mean of log endowment growth from her recalled observations, which are distorted by

similarity-weighted memory. Assets are claims on the aggregate endowment (Lucas, 1978).

Similarity-weighted memory explains empirically relevant patterns of beliefs: (i) the pos-

terior mean varies procyclically and overreacts to new information; that is, an upward re-

vision of the agent’s posterior mean predicts a negative forecast error because the posterior

mean is systematically too high after an upward revision (Coibion and Gorodnichenko, 2015);

and (ii) the agent’s subjective volatility of fundamentals varies countercyclically.

The intuition for procyclicality and overreaction of the posterior mean is as follows: If

today’s endowment growth is high (low), the agent overremembers past high (low) endow-

ment growth rates. The agent’s posterior mean is then high (low) after observing high (low)

endowment growth today (procyclicality). Overreaction of the agent’s posterior mean occurs

for a similar reason: The agent revises her posterior mean up if and only if today’s endow-

ment growth exceeds yesterday’s endowment growth. Conditional on an upward revision

of the agent’s expectation, today’s endowment growth is more likely to be above than be-

low the fundamental mean. Moreover, the agent’s posterior mean exceeds the fundamental

mean if and only if today’s endowment growth exceeds the fundamental mean. Consequently,

the agent’s posterior mean is more likely above than below the fundamental mean after an

3



upward revision, implying a predictably negative forecast error.

The intuition for the countercyclical variation of subjective volatility is more subtle.

The economy has two states. With two states, the subjective volatility of log endowment

growth depends on the perceived difference of the mean log endowment growth in each state,

which is time-varying. Under similarity-weighted memory, today’s endowment growth has

a stronger effect on the recalled growth rates when the growth rates are more spread out.

During recessions, endowment growth is more spread out than during normal times, such that

today’s log endowment growth affects the location of the recalled endowment growth from

recessions more than from normal times. Put differently, the agent is oblivious of recessions

during good times, but recalls them vividly during bad times. If today’s log endowment

growth is high (low), the difference of the posterior means is small (large), implying that the

agent perceives the economy as less (more) volatile.

In equilibrium, the agent’s subjective beliefs about fundamentals affect subjectively ex-

pected as well as objectively realized returns, as all assets are claims to the aggregate en-

dowment. Consistent with survey evidence by Greenwood and Shleifer (2014), return ex-

pectations are procyclical. When today’s log endowment growth is high, the agent becomes

optimistic and expects high log endowment growth going forward. The expected return (and

the risk-free rate) must then increase to induce investment in the risky asset. The subjective

risk premium—the difference between the subjectively expected return and the real risk-free

rate—depends on the agent’s risk-aversion and on the perceived riskiness of the economy.

The agent’s risk-aversion is constant, but the perceived riskiness of the economy (subjec-

tive volatility) is time-varying, which leads to time-variation in the subjective risk premium.

However, the variation in subjective volatility is small under similarity-weighted memory,

such that the subjective risk premium is acyclical, not predictable by aggregate valuation

ratios, and positively related to the agent’s perception of risk, consistent with evidence in

Nagel and Xu (2023).

Next, I examine objectively realized returns. First, the real risk-free rate varies procycli-
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cally. Intuitively, the risk-free rate must be high if the agent expects high endowment growth

to induce savings in the risk-free asset. Second, the objective risk premium is predictably

countercyclical. In equilibrium, objectively realized returns depend on changes in the agents’

beliefs and are predictable if belief changes are predictable. An outside observer with access

to the same data as the agent can recover the parameters of the endowment growth process

and predict mean reversion of the agent’s beliefs. If today’s endowment growth is high, the

agent becomes too optimistic about the fundamentals and pushes up the price of the risky

asset too much. Next period’s realization then disappoints on average, beliefs mean revert,

and objectively realized returns are low after a high endowment growth (Bordalo et al.,

2023b). Moreover, the agent updates beliefs as if the recalled experiences were all that ever

occurred and perceives the new beliefs to be persistent, which leads to volatile objective

returns. Objective returns are unrelated to changes in objective risk or risk-aversion as both

are constant.

I then calibrate the model to analyze the quantitative implications of similarity-weighted

memory. My simulations confirm the qualitative properties of beliefs and asset prices dis-

cussed above. In addition, the objective risk premium is high if the agent learns from a

realistic number of past observations (30-100 years of data),2 and can even become negative

during times of extremly high sentiment (Greenwood and Hanson, 2013; Cassella and Gulen,

2018). The real risk-free rate is low and does not vary much, as is consistent with data.

Peak-end memory. I briefly show that my framework can be used to analyze further

selective memory biases. I consider a peak-end memory distortion that captures the higher

memorability of extreme observations as well as observations that are similar to today‘s

realization (Kahneman, 2000). The experience effects literature highlights the persistent

influence of extreme experiences on risk taking (Malmendier and Nagel, 2011), inflation ex-

2With finitely many observations, the agent is uncertain about her posterior beliefs, and this uncertainty
depends on the (stochastic) number of recalled observations. As in Collin-Dufresne et al. (2016), parameter
uncertainty generates an additional source of risk which affects the subjective risk premium. In my simula-
tions, the subjective risk premium is only slightly higher with than without parameter uncertainty. Instead,
the higher volatility of beliefs when learning from a limited sample leads high realized returns.
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pectations (Malmendier and Nagel, 2016), managerial decisions (Malmendier et al., 2011),

and real estate purchases (Happel et al., 2023). Relatedly, Kensinger and Ford (2020) argue

that emotional events are more likely to be stored in memory and are often retrieved more

vividly (flashbulb memories; see Phelps, 2006). Additionally, the end of an experience is typ-

ically more memorable than the beginning or middle (recency; see Kahana, 2012; Barberis,

2018; Wachter and Kahana, 2023).

In addition to the implications of similarity-weighted memory, the peak-end memory

distortion leads to a high subjective volatility because the agent overremembers extreme

observations. Being risk-averse, the agent thus requires a comparably high subjective risk

premium, which is in line with the empirical findings reviewed in Adam and Nagel (2023).

Related literature. This paper contributes to a growing literature that examines the

importance of memory on belief formation and decision making. Empirical and experimental

work shows that investors’ information sets are systematically affected by selective memory

(Zimmermann, 2020; Charles, 2021, 2022; Gödker et al., 2022; Goetzmann et al., 2022;

Graeber et al., 2022; Burro et al., 2023; Enke et al., 2023; Jiang et al., 2023). In line

with a large literature in psychology (Tulving and Schacter, 1990; Schacter, 2008; Kahana,

2012), a common finding is that the recall of past observations is affected by the similarity

of the past observation and the current context.3 Using a representative survey of individual

investors, Jiang et al. (2023) identify similarity-weighted memory as a key mechanism in

the formation of investor beliefs. A theoretical literature analyzes the effect of memory

primarily on individual decision making (Gilboa and Schmeidler, 1995; Mullainathan, 2002;

Azeredo da Silveira and Woodford, 2019; Bodoh-Creed, 2020; Nagel and Xu, 2022; Bordalo

et al., 2023a; Fudenberg et al., 2023; Wachter and Kahana, 2023). I extend this literature by

showing that similarity-weighted memory can jointly explain empirical facts about subjective

expectations, subjective risk perceptions, and both subjective and objective returns in the

3The memory literature identified three main regularities of selective recall: Similarity (a higher likelihood
of recalling observations that are similar to today’s context), recency (a higher likelihood of recalling recent
rather than past observations), and contiguity (a higher likelihood of recalling observations that co-occur
temporally). Recency is closely related to extrapolative expectations (Nagel and Xu, 2022).
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aggregate.

My paper also contributes to the growing theoretical literature on subjective beliefs in

asset pricing (for an overview, see Adam and Nagel, 2023). A common empirical finding

is that individual investor expectations are procyclical: Investors expect asset prices to rise

further after high returns and to continue to fall after low returns (Vissing-Jorgensen, 2004;

Bacchetta et al., 2009; Amromin and Sharpe, 2014; Greenwood and Shleifer, 2014; Kuchler

and Zafar, 2019; Da et al., 2021). Theoretical research modeled procyclical expectations by

assuming over-extrapolation (Barberis et al., 2015; Adam et al., 2017; Barberis et al., 2018;

Jin and Sui, 2022), diagnostic expectations (Bordalo et al., 2018, 2019), partial-equilibrium

thinking (Bastianello and Fontanier, 2024), or overlapping generations that learn from per-

sonal experiences (Ehling et al., 2018; Malmendier et al., 2020). Li and Liu (2023) show

theoretically that procyclical fundamental expectations, but not procyclical return expec-

tations, lead to a volatile equity premium; and Nagel and Xu (2022) and Bordalo et al.

(2023b) empirically find that procyclical fundamental expectations explain the predictably

countercyclical and quantitatively high equity premium. However, models that assume fun-

damental extrapolation (Hirshleifer et al., 2015; Nagel and Xu, 2022) typically do not give

rise to return extrapolation. I show that similarity-weighted memory can simultaneously

explain procyclical fundamental expectations, return extrapolation, and time-variation in

the subjective volatility.

Studies that incorporate memory into asset pricing have focused mainly on fading mem-

ory to account for the evidence that lifetime experiences shape macroeconomic expectations

(Malmendier and Nagel, 2011, 2016; Malmendier and Wachter, 2022; Happel et al., 2023),

and Nagel and Xu (2022) analyze asset prices an economy in which a representative agent

learns with fading memory. Fading memory implies that the impact of a past experience

on the agent’s beliefs gradually decreases, and any past experience will eventually be for-

gotten. In contrast and consistent with the evidence on the long-term effect of experiences

on economic decisions, past experiences have a long-lasting effect on the agent’s beliefs and
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are never truly forgotten under selective memory.4 In addition to the asset pricing results in

Nagel and Xu (2022), I also obtain a time-varying subjective risk premium as well as return

extrapolation.

Selective memory is a central motivation for diagnostic expectations (Bordalo et al.,

2022), which have been used to explain credit cycles (Bordalo et al., 2018) and cross-sectional

variation of stock returns (Bordalo et al., 2019). In this paper, I explicitly model the recall

of past observations, obtain overreaction of expectations even in an i.i.d. economy, and

apply the model to analyze time-series properties of aggregate asset prices. Wachter and

Kahana (2023) provide a psychologically motivated theory of associative recall, in which the

agent’s current context cues memories of prior associated contextual states. Their focus is

on decision making, which is distinct from this paper.

My model also builds on previous work that analyzes the asset-pricing implications

of learning (Timmermann, 1993; Lewellen and Shanken, 2002; Weitzman, 2007). Collin-

Dufresne et al. (2016) analyze the asset pricing implications of parameter learning without

memory distortions. In their model, a representative agent with Epstein and Zin (1989)-

preferences prices the parameter uncertainty that emerges from gradual Bayesian learning.

I abstract from parameter uncertainty in my main analysis, but allow for it in simulations. I

find that parameter uncertainty emerging from selective memory leads to a realistically high

risk premium.

I also incorporate results from the statistics and economics literature on misspecified

learning (Berk, 1966; Esponda and Pouzo, 2016; Molavi, 2019; Heidhues et al., 2021; Molavi

et al., 2023) into the asset pricing literature. Fudenberg et al. (2023) propose the concept

of posterior beliefs as maximizers of the memory-weighted likelihood that is central to my

characterization of subjective long-term beliefs.

4Early studies of human memory (Ebbinghaus, 1885; Jost, 1897; Müller and Pilzecker, 1900; Carr, 1931)
focused on the finding that past experiences seem to be forgotten as a function of time decay (power law
of forgetting), but experimental findings challenged the notion that experiences are ever truly forgotten.
Instead, if the context of the original experience is reinstated, seemingly forgotten memories are typically
recalled (Kahana, 2012).
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The paper proceeds as follows. In Section 2, I describe the framework for my analysis of

subjective beliefs under selective memory and introduce the asset pricing model. In Section 3,

I apply the model to analyze the effect of similarity-weighted memory on investor beliefs and

asset prices. Section 4 briefly analyzes an extension of the model to the peak-end memory

distortion, and Section 5 concludes. All proofs are in the appendix.

2 Beliefs and asset prices under a general selective

memory distortion

In this section, I characterize the agent’s long-term beliefs under selective memory and

describe the asset pricing framework. Selective memory is my only departure from a rational

expectations model, and all asset pricing effects are driven by the agent’s subjective long-

term beliefs. I specify the learning environment and model of selective memory in Section

2.1. To simplify the exposition, I focus on discrete distributions as in Fudenberg et al.

(2023). An extension to continuous distributions is in Online Appendix OA.1. Proposition 1

in Section 2.2 is new and characterizes the agent’s subjective beliefs for normal distributions,

as is relevant for applications in finance. Similarity-weighted memory (Section 3) and the

peak-end memory distortion (Section 4) are structural applications of the framework. I then

describe the asset pricing framework in Section 2.3, where I use the canonical model by

Martin (2013) that nests the standard consumption-based asset pricing model (Mehra and

Prescott, 1985). Readers who are interested in the applications may prefer to go directly to

the specific section.

2.1 Learning framework

In this subsection, I formalize the learning problem of an agent with selective memory.

Economy. I study a representative agent endowment economy in discrete time. In
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every period t, the agent observes the state of the world st and log endowment growth

gt = logCt/Ct−1. The assets in the economy are levered claims on the endowment stream.

I assume that the state st = s is drawn from a finite set S ⊆ N according to the fixed,

i.i.d. and full support distribution Ξ ∈ ∆(S), where Ξ(s) denotes the probability of state

s. The state st = s induces a fixed and i.i.d. distribution q∗s ∈ ∆(G) over the finite set

of possible endowment growth realizations G, that is q∗s(g) = Pr (gt = g|st = s).5 I assume

that q∗s belongs to the family of parametric distributions, q∗s ∈ {qθ : θ ∈ Θ}, ∀s ∈ S, with

Θ ⊆ Rk, k ∈ N, closed and convex.

Learning. The agent knows the distribution Ξ of states, but must learn the distribu-

tion of log endowment growth. To model uncertainty about the distribution of log endow-

ment growth, I assume that the agent holds a prior belief b0 over potential distributions

q ∈ ∆(G)|S|, where qs(g) denotes the probability of gt = g when st = s, and q specifies one

induced distribution qs for each state s ∈ S. The support of the prior is Q and contains all

q that the agent considers possible. I focus on the case in which the agent considers only

parametric distributions qs ∈ {qθ : θ ∈ Θ}, ∀s ∈ S, and impose two additional regularity

conditions on the prior. First, the agent is correctly specified q∗ ∈ Q (Esponda and Pouzo,

2016; Fudenberg et al., 2023), which implies that the agent eventually learns the true dis-

tribution without memory distortions. Second, for all q ∈ Q and all s ∈ S, it holds that

q∗s(g) > 0 implies qs(g) > 0.

Memory. The agent observes an infinite history of log endowment growth and state re-

alizations, Ht = {(gτ , sτ )}tτ=−∞, where I call the tuple (gτ , sτ ) an experience. ts =
∑

τ 1{sτ=s}

denotes the number of experiences with sτ = s, τ ≤ t. In any period t, the agent recalls

a subset of past experiences. The agent always observes and recalls the current experi-

ence (gt, st), but her memory of any past experience is distorted by the memory function

5The assumption of a finite set of possible endowment growth realizations is for simplicity and allows me
to directly use the results from Fudenberg et al. (2023) here. Behaviorally, the restriction can be justified by
assuming that the agent only observes and recalls a discrete approximation of endowment growth, potentially
due to limited attention. The results extend to continuous distributions, but I defer the discussion of
continuous distributions to Online Appendix OA.1.
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m(gt,st) : G×S 7→ [0, 1]. For τ < t, the value of the memory function m(gt,st)(gτ , sτ ) specifies

the probability with which the agent recalls past experience (gτ , sτ ) given (gt, st). The re-

called periods rt are a subset of {−∞, ..., t} and the recalled history HR
t ⊆ Ht is the collection

of recalled experiences {(gτ , sτ )}τ∈rt with |HR
t | past experiences. Similarly, rs,t denotes the

recalled periods in state s and the recalled history of state s HR
s,t ⊆ HR

t is the collection of

recalled experiences for each state, that is with sτ = s.

Beliefs. The agent forms Bayesian beliefs as if her recalled historyHR
t is all that occurred

(näıvety).6 Her posterior belief in period t is

bt
(
A|HR

t

)
=

∫
q∈A
∏

τ∈rt qsτ (gτ ) db0(q)∫
q∈Q
∏

τ∈rt qsτ (gτ ) db0(q)
∀A ⊆ Q, (1)

where A is a (sub-)set of probability distributions in the agent’s prior support Q.

2.2 Subjective long-term beliefs

I next characterize the agent’s subjective long-term beliefs. Define the memory-weighted

likelihood maximizer (Fudenberg et al., 2023) conditional on this period’s experience (gt, st)

as

LM(gt, st) = argmax
q∈Q

(∑
s∈S

Ξ(s)
∑
g∈G

m(gt,st)(g, s) q
∗
s(g) log qs(g)

)
. (2)

The memory-weighted likelihood maximizer is the element of the agent’s prior support

that maximizes the likelihood of the recalled history HR
t . Fudenberg et al. (2023) show that

the agent’s beliefs after a sufficiently long realized history Ht are given by the memory-

weighted likelihood maximizer. The agent observes an infinite history of experiences and

6First, the agent recomputes her beliefs each period based on all recalled information and does not
sequentially update her belief in period t − 1 based on the experience (gt, st). d’Acremont et al. (2013)
and Sial et al. (2023) present evidence that humans access their accumulated evidence when forming beliefs.
Second, modelling partial näıvety requires assumptions on the agent’s perception of her memory function.
If the agent anticipates her memory selectivity, she will perfectly undo any memory bias and learn q∗.
Alternatively, if she believes that her recalled experiences are representative for the experiences she does not
recall, then her belief bt is not affected by partial näıvety. An analysis of intermediate assumptions about
the agent’s perception of her memory selectivity is provided in Fudenberg et al. (2023).
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the empirical frequency of log endowment growth conditional on the state converges almost

surely to the true distribution, q∗s . However, the agent selectively recalls past experiences,

and the frequency of recalled experiences converges to a memory-weighted version of the true

distribution. It is a property of Bayesian learning that distributions that do not maximize

the likelihood of the recalled experiences have vanishing posterior probability,7 which implies

that the agent’s beliefs concentrate on the memory-weighted likelihood maximizer.8

I next illustrate the effect of selective memory on the agent’s subjective beliefs if log

endowment growth is normally distributed conditional on the state, as is relevant for asset

pricing applications. Assume that log endowment growth is drawn from a normal distribu-

tion, q∗s ∈ {qθ = 1√
2πσ2

exp
(
− (g−µ)2

2σ2

)
|θ = (µ;σ2) ∈ Θ, µ ∈ R, σ2 ∈ R≥0, g ∈ R} =: ΘN ,

where Θ is closed and convex.9 I associate each q∗s with a parameter vector θs = (µs, σ
2
s)

whenever no confusion arises. Assumption 1 holds for the remainder of this paper, and

Proposition 1 shows how the agent’s state-wise posterior belief depends on selective mem-

ory. The agent observes and recalls the state, leading to state-wise inference.

Assumption 1 The prior support is Θ
|S|
N , and q∗ ∈ Θ

|S|
N .

Proposition 1 (Normal posterior under selective memory). For each state s ∈ S, the agent’s

belief bs,t is almost surely given by the unique normal distribution with θ̂s,t := (µ̂s,t, σ̂
2
s,t), and

µ̂s,t = µs + E
[ ts
|HR

s,t|

]
︸ ︷︷ ︸
Forgetfulness

· Cov
[
g,1{g∈HR

s,t}

]
︸ ︷︷ ︸

Selectivity

, and (3)

7See Berk (1966)’s concentration result, and the Bernstein-von-Mises theorem under model misspecifi-
cation (Kleijn and Van Der Vaart, 2012).

8Without memory distortions, m(gt,st)(gτ , sτ ) = 1, ∀(gτ , sτ ) ∈ G × S, the distribution of recalled ex-
periences is identical to the distribution of log endowment growth, and the agent learns q∗ because she
is correctly specified. Similarly, LM(gt, st) does not depend on the “scale” of the memory function. If
m(gt,st)(·) = c m′

(gt,st)
(·), c > 0, then both memory functions have the same memory-weighted likelihood

maximizer. The agent learns q∗ if her memory is only stochastic, but not selective. The framework nests
rational expectations.

9I use g to refer to endowment growth as a random variable instead of as a specific realization gτ . The
closedness of Θ implies that µ ∈ [µ; µ̄] with µ > −∞ and µ̄ <∞, and σ2 ∈ [0, σ̄2] with σ̄2 <∞.
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σ̂2
s,t = σ2

s +
(
µ̂s,t − µs

)2
+ E

[ ts
|HR

s,t|

]
︸ ︷︷ ︸
Forgetfulness

· Cov
[
(g − µ̂s,t)

2,1{g∈HR
s,t}

]
︸ ︷︷ ︸

Selectivity

, (4)

where the indicator random variable 1{g∈HR
s,t} equals one if the agent recalls endowment growth

gτ = g with sτ = s, and zero otherwise.

Equation 3 shows that the agent’s posterior mean of log endowment growth in state s

depends on two elements: (i) the true fundamental mean µs, and (ii) an adjustment term

that arises from selective memory. The “forgetfulness” term in the adjustment, E
[

ts
|HR
s,t|

]
,

is the expected size of the realized history relative to the recalled history of state s. If the

agent recalls almost all past observations, m(gt,st)(gτ , sτ ) ≈ 1, the recalled history will be

as long as the realized history, |HR
s,t| ≈ ts. The recalled history will be “shorter” than the

realized history if the agent, instead, barely recalls past observations.10 The second term

in the adjustment, Cov
[
g,1{g∈HR

s,t}

]
, captures selectivity. The posterior mean will be higher

than the true mean if the agent is more likely to recall high log endowment growth rates from

state s, as measured by the covariance between g and the propensity of recalling gτ = g.11

On the contrary, if the agent is as likely to recall high as low log endowment growth rates,

such that Cov
[
g,1{g∈HR

s,t}

]
≈ 0, the agent almost surely learns µs.

The agent’s posterior variance of log endowment growth in state s (Equation 4) is an-

chored at the true underlying variance σ2
s and learned by an agent without memory distor-

tions. The second term in Equation 4, (µ̂s,t − µs)
2, is the usual adjustment for the usage of

a biased mean estimate. The last term in Equation 4, E
[

ts
|HR
s,t|

]
· Cov

[
(g − µ̂s,t)

2,1{g∈HR
s,t}

]
,

captures the direct effect of selective memory on the agent’s posterior variance. Selective

memory increases the posterior variance whenever the agent is more likely to recall more

spread-out log endowment growth rates, while selectivity decreases the posterior variance if

10Using Jensen’s Inequality, it is E
(

1
X

)
≥ 1

E(X) for a positive random variableX; and therefore E
[

ts
|HR

s,t|

]
≥

ts
E[|HR

s,t|]
.

11In my formulation of selective memory, the agent recalls a past experience with probability
m(gt,st)(gτ , sτ ) and does not recall the experience otherwise. Therefore, 1{g∈HR

t } is a random variable

with E
(
1{g∈HR

t }

)
= m(gt,st)(gτ , sτ ).
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the agent tends to recall endowment growth rates that are close to the posterior mean.

Depending on the memory specification and on today’s experience (gt, st), the agent can

be too optimistic (µ̂s,t > µs) or too pessimistic (µ̂s,t < µs). Likewise, the agent might

perceive the economy as more risky (σ̂2
s,t > σ2

s) or less risky (σ̂2
s,t < σ2

s) than it truly is.

In addition, selective memory can also lead to time-variation in the agent’s beliefs because

the propensity to recall a given experience may depend on the current experience (gt, st). I

apply Proposition 1 to similarity-weighted memory (Section 3) and the peak-end memory

distortion (Section 4).

2.3 Asset pricing framework

In this subsection, I incorporate the agent’s subjective beliefs that arise from selective

memory into a standard consumption-based asset pricing model (Lucas, 1978; Mehra and

Prescott, 1985). For analytical tractability, I follow the framework of Martin (2013).12

I assume that the representative agent has Epstein and Zin (1989)-preferences

Ut =

{
(1− β)C

1−γ
η

t + β
(
Ẽt

[
U1−γ
t+1

]) 1
η

} η
1−γ

, (5)

with discount factor β, risk-aversion γ, elasticity of intertemporal substitution (EIS) ψ, and

composite parameter η = 1−γ
1−1/ψ

. In any period t, the agent maximizes the expected lifetime

utility under her subjective expectations Ẽt(·) formed under the posterior bt.

The agent is unaware of her memory distortions and treats her recalled experiences as if

they were all that ever occurred. Although the agent’s recalled information does not form a

filtration, the agent, at any time t, holds an internally consistent set of beliefs and behaves

as if the law of iterated expectations holds (Adam and Nagel, 2023), such that the economy

is as in Martin (2013).

Consider an asset that pays a dividend stream {Dt+k}k≥0 with Dt+k = Cλ
t+k for some

12Appendix F gives a more detailed derivation of the results.
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constant λ. If λ = 0, the asset is a riskless bond that pays 1 in each period; if λ = 1, the

asset is the aggregate consumption claim; and λ > 1 is a levered claim (Campbell, 1986;

Abel, 1999). Define the log dividend-price ratio as dpt = log(1 + Dt
Pt
). The return on any

asset is Rt+1 = Dt+1+Pt+1

Pt
= Dt+1

Dt
Dt
Pt

(
1 + Pt+1

Dt+1

)
, and the log subjective expected return is

ẽrt = log
(
Ẽt Rt+1

)
. Similarly, the log risk-free rate is the log (subjective) expected return

on the riskless bond,13 and the subjective risk premium on the λ-asset is the difference

between the log subjective expected return and the log risk-free rate. Martin (2013) shows

that14

rft = − log(β)−Kt(−γ) +
(
1− 1

η

)
Kt(1− γ), (6)

dpt = − log(β)−Kt(λ− γ) +

(
1− 1

η

)
Kt(1− γ), (7)

ẽrt = dpt +Kt(λ), (8)

r̃pt = ẽrt − rft = Kt(λ) +Kt(−γ)−Kt(λ− γ), (9)

whereKt(k) is the cumulant-generating function under the agent’s subjective beliefs in period

t. The moment-generating function Mt(k) and the cumulant-generating function Kt(k)

under the agent’s subjective beliefs are defined as

Mt(k) := Ẽt

(
ek gt+1

)
, and

Kt(k) := log (Mt(k)) = log Ẽt

(
ek gt+1

)
, respectively.

Both the moment-generating function and the cumulant-generating function provide ex-

pressions for the moments of log endowment growth under the agent’s posterior belief bt.

13Note that, in equilibrium, the risk-free rate and asset prices in period t are determined under the agent’s
subjective measure and thus objectively realized. The realized return and the realized risk premium, instead,
may deviate from subjective expectations because they depend on next period’s dividend payment and price.

14The asset-pricing quantities for the power-utility case follow for ψ = 1/γ, which implies η = 1.
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Expanding the cumulant-generating function Kt(k) as a power series yields

Kt(k) =
∞∑
n=1

cn
kn

n!
,

with cumulants cn. The first four cumulants are related to the first four moments of the

agent’s posterior belief: c1 ≡ µ̂t is the posterior mean of the agent, c2 ≡ σ̂2
t is the agent’s

posterior variance, c3

c
3/2
2

is the skewness, and c4
c22

is the excess kurtosis under the agent’s

posterior belief bt.

I next discuss how the agent’s subjective beliefs affect equilibrium asset prices. To gain

intuition, consider power-utility preferences (η = 1) and a second-order approximation of

the cumulant-generating function, Kt(k) ≈ k c1 +
1
2
k2 c2 = k µ̂t +

1
2
k2 σ̂2

t , which yields

rft = − log(β) + γ µ̂t −
1

2
γ2 σ̂2

t ,

dpt = − log(β)− (λ− γ) µ̂t −
1

2
(λ− γ)2σ̂2

t ,

ẽrt = − log(β) + γ µ̂t + λ γ σ̂2
t −

1

2
γ2 σ̂2,

r̃pt = λ γ σ̂2
t .

Both the risk-free rate and the subjective expected return are increasing in the posterior

mean of the agent, µ̂t, while the dividend-price ratio is decreasing in µ̂t if λ > γ. Intuitively,

if the agent becomes more optimistic (higher µ̂t), she consumes more today. The risk-free

rate and subjective expected return must then increase to induce saving/investment. The

dividend yield dpt decreases in µ̂t because the price—which reflects the discounted sum of

all future dividends—increases in µ̂t if leverage λ exceeds the agent’s risk-aversion γ.15 Note

that the subjective risk premium is independent of µ̂t because the risk-free rate and the

subjective expected return both depend positively on γ µ̂t.

15Instead, if γ > λ—which is empirically more relevant and considered below—the agent discounts future
high dividend-payments more heavily due to the low marginal utility of high consumption and the divdend
yield is increasing in µ̂t. The effect does not arise under Epstein and Zin (1989)-preferences, which decouple
risk-aversion and EIS.

16



Moreover, the agent’s posterior variance—the agent’s subjectively perceived risk in the

economy—affects asset prices. The risk-free rate is decreasing in σ̂2
t , because the risk-averse

agent has a precautionary savings motive that is stronger the more risky the economy ap-

pears. The decreasing risk-free rate also leads to a decreasing dividend yield dpt due to

a discount-rate effect. In addition, the posterior variance has two opposite effects on the

subjectively expected return: First, the decrease in the risk-free rate leads to a decrease of

the subjectively expected return, as the overall level of returns in the economy decreases.

Second, the risk-averse agent requires a positive subjective risk premium, rpt = λ γ σ̂2
t , which

increases in the posterior variance. The expected return increases in the posterior variance

if the risk premium effect dominates the risk-free rate effect (λ > 1
2
γ).

3 Similarity-weighted memory

In this section, I assume that the agent’s memory is distorted by a similarity-weighted

memory function and impose additional structure on log endowment growth. I focus on

similarity with respect to the log endowment growth (Section 3.1). Using Proposition 1, I

analyze the agent’s long-term beliefs under similarity-weighted memory in Section 3.2, and

discuss the asset pricing implications in Section 3.3. Finally, I use standard data to estimate

the parameters of log endowment growth under my structural assumptions and simulate

asset prices (Section 3.4).

The mechanism in this section works as follows: The economy is either in a normal

state or in a recession. Let endowment growth always be high in normal times, while it

can be high or low during recessions (recessions have higher fundamental uncertainty). The

agent observes the contemporaneous endowment growth (current context) and recalls past

experiences with similar endowment growth. Since endowment growth is always high in

normal times, the agent can only recall high endowment growth from normal times and her

belief about normal times does not react to the current context. On the contrary, whether
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the agent recalls high or low endowment growth from recessions depends on the current

context. If contemporaneous endowment growth is high (low), the agent recalls more high

(low) endowment growth experiences from recessions, and her posterior mean will be high

(low). Therefore, the agent’s posterior mean covaries positively with the current context,

and recessions are perceived to be worse if contemporaneous endowment growth is low than

if it is high.16 Put differently, the agent becomes oblivious of recessions during good times,

but recalls them vividly during bad times.

In line with this motivating example, Enke et al. (2023) conducted a series of laboratory

experiments and document that similarity-weighted memory causes an overreaction of exper-

imental market prices. In their experiment, subjects observe news about different companies,

some of which are shown in a memorable context. The authors find that subjects asymmet-

rically recall past news if it is cued by the current context, which leads to an overreaction

of expectations and of experimental asset prices. Using a representative survey of retail

investors, Jiang et al. (2023) present additional evidence of similarity-weighted memory as a

key mechanism of belief formation in financial markets. The authors elicit investor memories

of past returns and find support for similarity-weighted recall in that investors recall more

positive past returns if today’s stock market return is high. The recalled memories are highly

correlated with expectations and have a higher explanatory power for investor beliefs than

actual experiences.

3.1 Structural assumptions

The assumptions in Section 2.1 continue to hold, but I impose additional structure on the

economy. Let S = {1, 2}, and st = s follows a two-state observable Markov chain with

constant transition matrix Π. The elements of Π are πij = Pr[st = j|st−1 = i], and I restrict

16The example here is an extension of the thirsty traveler example in Bordalo et al. (2020b). Consider
a thirsty traveler who recalls water prices from memory. At the airport, water prices are always high, thus
the traveler can only recall high water prices at the airport experiences regardless of the current context. In
contrast, water prices downtown are sometimes low (at the corner store) and sometimes high (at a luxury
hotel), such that similarity-weighted memory systematically affects retrieved water prices downtown.
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π11 = π21 =: π1 and π12 = π22 = 1− π1 =: π2 to ensure that the process is i.i.d. Conditional

on state st = s, log endowment growth is normally distributed

gt = µst + σst ϵt, ϵt
i.i.d.∼ N (0, 1). (10)

The mean µs and variance σ2
s are state-dependent. Let µ1 > µ2 and σ

2
1 < σ2

2, such that state

1 corresponds to normal times, while state 2 captures recessions.

Markov-switching models have been widely used to model aggregate endowment dynam-

ics due to their flexibility and tractability (Mehra and Prescott, 1985; Rietz, 1988; Barro,

2006; Johannes et al., 2016). I use the two-state structure to analyze how similarity-weighted

memory affects the agent’s perception of recessions compared to normal times. All results

that relate to the agent’s posterior mean hold if endowment growth is log-normally dis-

tributed, but the perceived riskiness of the economy is then constant (see Online Appendix

OA.2.1).

As before, the agent relies on an infinite history of past endowment growth and state

realizations, Ht = {(gτ , sτ )}tτ=−∞, to learn state-dependent parameters as in Proposition

1. The recalled history HR
t is distorted by a similarity-weighted memory function (see also

Kahana, 2012; Jiang et al., 2023)

msim
(gt,st) (gτ , sτ ) = exp

[
−(gτ − gt)

2

2κ

]
, (11)

where κ > 0 captures the scrutiny with which the agent examines her memory database,

and a high scrutiny implies that the agent recalls almost all past observations. An extension

in which similarity also depends on the state is in Online Appendix OA.2.2.

3.2 Long-term beliefs

I next analyze the agent’s long-term beliefs under similarity-weighted memory. First, I

highlight central properties of the agent’s subjective beliefs, and then analyze the rationality
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of the agent’s forecast. Finally, I discuss the predictability of belief revisions.

Subjective beliefs. Proposition 2 characterizes the state-wise beliefs of an agent with

a similarity-weighted memory distortion.

Proposition 2 (State-wise subjective beliefs). Under similarity-weighted memory as in

Equation 11, almost surely,

µ̂s,t =
κ

κ+ σ2
s

µs +
σ2
s

κ+ σ2
s

gt = (1− αs)µs + αs gt, and (12)

σ̂2
s,t = (1− αs)σ

2
s , (13)

where αs := σ2
s

κ+σ2
s
∈ (0, 1) measures the sensitivity of the agent’s belief to this period’s log

endowment growth gt.

Equation 12 shows that the state-dependent posterior mean of the agent is a convex

combination of the true state-dependent mean µs and this period’s log endowment growth

gt. If today’s endowment growth is high, the agent is more likely to recall past experiences

with a high endowment growth than with a low endowment growth due to similarity. The

agent will therefore be more (less) optimistic if this period’s endowment growth is high (low).

Similarity-weighted memory distortions provide a microfoundation for extrapolative beliefs in

that the agent’s posterior is formed as if the agent overweights contemporaneous endowment

growth when forming beliefs (for an overview on extrapolative beliefs, see Barberis, 2018).

The sensitivity of the agent’s state-wise posterior mean to contemporaneous endowment

growth gt depends on the state-dependent variance σ2
s and the scrutiny κ, as summarized in

αs. If σ
2
s → 0, the true distribution of log endowment growth in state s is concentrated at µs.

All observations that the agent can recall are very close to µs and the agent’s posterior mean

must be µ̂s,t ≈ µs. If σ
2
s → ∞, the distribution of endowment growth in state s becomes flat,

close to a uniform distribution, and the agent observes all endowment growth rates equally

often. The agent’s recalled experiences are then determined by the agent’s memory function,

which is symmetric around gt and her posterior mean will be µ̂s,t ≈ gt.
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The reverse intuition holds for scrutiny parameter κ. If scrutiny is high (κ → ∞),

similarity becomes irrelevant because the agent always consults all memories and the agent’s

recalled experiences are determined by the distribution of log endowment growth in state

s. If scrutiny is low (κ → 0), similarity is very important and past experiences with log

endowment growth that differs from the contemporaneous log endowment growth will not

be recalled. The posterior mean of the agent equals gt.

The agent’s state-dependent posterior variance (Equation 13) is independent of the con-

temporaneous endowment growth and smaller than the fundamental state-dependent vari-

ance σ2
s since αs ∈ (0, 1). The agent’s similarity-weighted memory distortion symmetrically

overweights observations that are close to the contemporaneous log endowment growth, and

the agent tends to forget experiences that are less similar to the contemporaneous log en-

dowment growth. Therefore, the scale of the posterior distribution is smaller than the scale

of the fundamental distribution.17

I focus on the case in which the agent knows the state-dependent variances, σ2
1 and σ

2
2, but

learns about the mean endowment growth µ1 and µ2.
18 Moreover, I now discuss properties

of the agent’s unconditional time-t belief about log endowment growth, which determines

asset prices. Note that the unconditional distribution of log endowment growth is a mixture

of the state-wise distributions, which is generally not a normal distribution even though

log endowment growth is normally distributed conditional on the state. I thus characterize

the unconditional (perceived and actual) distribution of log endowment growth using the

cumulant-generating function (Section 2.3):

Kt(k) = log [Mt(k)] = log
[
π1 e

k µ̂1,t+
1
2
k2 σ2

1 + π2 e
k µ̂2,t+

1
2
k2 σ2

2

]
. (14)

The same expression holds under rational expectations with µ̂1,t = µ1 and µ̂2,t = µ2, and I

17In terms of Proposition 1, the covariance between recalling an experience and that experience being
distant from the posterior mean is negative under similarity-weighted memory, but constant over time.

18Qualitatively, all results hold when the agent simultaneously learns about the state-wise variances. As
the state-dependent posterior variances are constant, one only needs to replace σ2

s by σ̂2
s .
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find the n’th (non-central) moment by taking the n’th derivative of the moment-generating

function with respect to k and evaluating the derivative at k = 0. Although Martin (2013)

shows that higher-order moments have a non-trivial effect on asset prices, I focus on the

subjective mean and variance of log endowment growth, as these two moments have the

most pronounced effect on asset prices. The simulations in Section 3.4 incorporate higher-

order moments, and Figure D.1 in Appendix D plots the dependence of the first four moments

on gt.

The unconditional expected log endowment growth under the agent’s posterior belief is

Ẽt (gt+1) = π1 µ̂1,t + π2 µ̂2,t. (15)

Equation 15 shows that agent’s expected log endowment growth is the probability-weighted

average of the state-wise posterior means. The expected log endowment growth is thus

increasing in this period’s endowment growth (procyclical). The sensitivity of the expected

log endowment growth to the contemporaneous endowment growth depends on a weighted

average of the state-wise variances and on the scrutiny κ. Proposition 3 characterizes the

agent’s state-wise and unconditional posterior mean.

Proposition 3 (Subjective mean). The average state-dependent posterior mean conditional

on the current state is

E (µ̂1,t+1|st+1 = 1) = µ1 (16)

E (µ̂1,t+1|st+1 = 2) = µ1 + α1 (µ2 − µ1) , (17)

and the average state-dependent posterior mean is

E (µ̂1,t+1) = µ1 + α1 π2 (µ2 − µ1) . (18)

Equations 16—18 hold for µ̂2,t+1 with the respective change of indices. Moreover, the average
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unconditional posterior mean of log endowment growth is

E (π1 µ̂1,t+1 + π2 µ̂2,t+1) = π1 µ1 + π2 µ2 + π1 π2 (µ2 − µ1) (α1 − α2) . (19)

The posterior mean of state 1 is unbiased if state 1 occurs, but is biased toward the

mean of state 2 if state 2 occurs. The reasoning is as follows: If today’s state st = s, then

log endowment growth is drawn from a distribution centered at µs, such that the realized

endowment growth gt will, on average, be µs in state s. On average, the posterior mean of

state 1 is thus unbiased if st = 1, but pulled to µ2 if st = 2. As a result, the average state-

dependent posterior mean, which is a combination of the average state-dependent posterior

mean conditional on each state, is biased towards the mean of the other state.

The average unconditional posterior mean given in Equation 19 is biased upward, since

µ1 > µ2 and α1 < α2 by assumption. In normal times, st = 1, endowment growth tends to

be high and the posterior mean of state 2 is biased upwards. Similarly, the posterior mean of

state 1 is biased downwards in a recession (st = 2), but the downward bias of the posterior

mean of state 1 is smaller than the upward bias of the posterior mean of state 2 because

α1 < α2. The net effect is an upward bias of the unconditional posterior mean, such that

the agent is, on average, too optimistic about endowment growth.19

The posterior variance of log endowment growth under the agent’s beliefs is

Vart (gt+1) = π1 σ
2
1 + π2 σ

2
2 + π1 π2 (µ̂1,t − µ̂2,t)

2 . (20)

Equation 20 highlights that the perceived riskiness of the economy, Vart(gt+1), depends not

only on the state-wise variances (σ2
1 and σ2

2), but also on the squared distance between the

state-wise posterior means (µ̂1,t − µ̂2,t)
2. Intuitively, the agent perceives the economy as

more risky if recessions are severe compared to normal times (µ̂2,t << µ̂1,t). Proposition 4

19It follows that the posterior mean under similarity-weighted memory is unbiased if endowment growth
is log-normally distributed.
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characterizes the average posterior variance.

Proposition 4 (Subjective unconditional variance). The average posterior variance of the

agent is

E [Vart (gt+1)] =
(
π1 σ

2
1 + π2 σ

2
2

) [
1 + π1 π2 (α1 − α2)

2]
+ (µ1 − µ2)

2 π1 π2
[
π1 π2 (α1 − α2)

2 + [1− (α1 π2 + α2 π1)]
2] , (21)

which is larger than the true variance Var (gt+1) if

(α1 − α2)
2 (π1 σ

2
1 + π2 σ

2
2)

2 (π2 α1 + π1 α2)− (π2 α2
1 + π1 α2

2)
≥ (µ1 − µ2)

2 , (22)

and bounded by

0 ≤ E [Vart (gt+1)] ≤ 1.25 Var(gt+1).

Condition 22 allows me to characterize situations in which the average perceived riskiness

of the economy exceeds the fundamental riskiness. The left-hand side of Condition 22 is

always positive, so that Condition 22 holds for (µ1 − µ2) → 0. Similarity-weighted memory

systematically increases the perceived variance if the mean in both states is approximately

equal because the sensitivity of the posterior means to the contemporaneous endowment

growth generally differs. Additionally, the left-hand side of Condition 22 increases in the

difference of the state-dependent variances σ2
1 and σ2

2. The sensitivity of the posterior mean

of state s depends on the state-dependent variance σ2
s . In situations in which σ2

2 >> σ2
1, the

posterior mean of state 2 reacts more strongly to this period’s endowment growth gt than

the posterior mean of state 1, such that the squared difference of the posterior means is, on

average, higher if σ2
2 >> σ2

1 than if σ2
2 ≈ σ2

1.

Moreover, I have α2 > α1, such that the posterior mean of state 2 is more sensitive

to the contemporaneous endowment growth than the posterior mean of state 1. Define
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g∗ = (1−α1)µ1+(1−α2)µ2
α2−α1

as the log endowment growth for which µ̂1,t = µ̂2,t. The difference

between the posterior means µ̂1,t − µ̂2,t decreases in the log endowment growth for gt < g∗,

equals zero for gt = g∗, and increases in gt whenever gt > g∗. Therefore, the unconditional

posterior variance of the agent also decreases in gt for gt < g∗, and increases in gt for gt > g∗.

The perceived riskiness of the economy is a convex function of the contemporaneous log

endowment growth.

Forecast rationality. I now compare the expectations of an agent under similarity-

weighted memory to the expectations of an agent without memory distortions.20 Intuitively,

realizations of a stochastic process should move one-for-one with a rational forecast, such

that forecast rationality implies aMZ = 0 and βMZ = 1 in the following Mincer and Zarnowitz

(1969)-regression:

gt+h = aMZ + βMZ Ẽt (gt+h) + ut+h. (23)

Another property of rational forecasts is that they should neither overreact nor underreact

to new information. Coibion and Gorodnichenko (2015) propose the following regression to

test over- or underreaction of forecasts:

gt+h − Ẽt (gt+h) = aCG + βCG

[
Ẽt (gt+h)− Et−1 (gt+h)

]
+ ut+h. (24)

Forecast rationality implies aCG = 0 and βCG = 0 in Equation 24, because the forecast

revision Ẽt (gt+h)− Et−1 (gt+h) is known to the agent at time t and should thus not predict

forecast errors. Otherwise, a rational agent would adjust her forecast. If βCG < 0, beliefs

overreactions as the belief revision is too strong on average, while βCG > 0 captures under-

reaction. Proposition 5 shows that I can reject forecast rationality in Mincer and Zarnowitz

(1969)-regressions and find overreaction in Coibion and Gorodnichenko (2015)-regressions

for an agent with similarity-weighted memory.

20Note that I can always obtain the rational benchmark for κ→ ∞.

25



Proposition 5 (Properties of subjective forecasts). Under similarity-weighted memory, I

can reject rationality of the agent’s forecast as measured by Mincer and Zarnowitz (1969)-

regressions in Equation 23, since

βMZ = 0 < 1, and aMZ = π1 µ1 + π2 µ2 ̸= 0. (25)

The long-term beliefs of an agent with similarity-weighted memory overreact as measured

by Coibion and Gorodnichenko (2015)-regressions in Equation 24, since

βCG = −1

2
< 0, and aGC = π1 π2 (µ2 − µ1) (α1 − α2) . (26)

The results summarized in Proposition 5 show that the agent’s forecast is uninforma-

tive for the realization of log endowment growth (βMZ = 0). The best forecast of future

realizations of log endowment growth is the long-term mean π1µ1+π2µ2, because log endow-

ment growth is i.i.d. The agent’s expectation, however, covaries with the current realization

of endowment endowment growth gt due to similarity-weighted memory, but the current

realization of an i.i.d. process is not predictive for future realizations, yielding βMZ = 0.

Similarity-weighted memory also leads to an overreaction of the agent’s forecast (βGC < 0).

For simplicity, focus on µ̂1,t = (1 − α1)µ1 + α1 gt. The agent revises the posterior mean

of state 1 upward if and only if tomorrow’s log endowment growth exceeds the contempo-

raneous log endowment growth, gt+1 > gt. Thus, conditional on an upward revision, it is

Pr(gt+1 ≥ µ1|gt+1 > gt) > 0.5, since gt+1 must exceed gt. In addition, we also know that

µ̂1,t+1 exceeds the true mean µ1 if and only if gt+1 > µ1. Consequently, the agent’s poste-

rior mean is more likely above than below the fundamental mean after an upward revision,

implying a predictably negative forecast error.

Belief predictability. As a last step in the analysis of the agent’s belief, I examine the

predictability of the agent’s belief revisions. The agent’s subjective beliefs drive asset prices,

such that the predictability of beliefs implies predictability of realized returns.
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An econometrician with access to the same realized and infinite history Ht as the agent

will perfectly uncover the true parameters of the data-generating process, and can forecast

the agent’s next-period beliefs. The expected subjective moment-generating function is

M̃(m) := E [Mt+1(m)] =π1 E [ emα1 gt+1 ] em (1−α1)µ1+
1
2
m2 σ2

1+

π2 E [ emα2 gt+1 ] em (1−α2)µ2+
1
2
m2 σ2

2

=π1 e
K∗(mα1)+m (1−α1)µ1+

1
2
m2 σ2

1

+ π2 e
K∗(mα2)+m (1−α2)µ2+

1
2
m2 σ2

2 , (27)

where K∗(k) = log
(
π1 e

k µ1+
1
2
k2 σ2

1 + π2 e
k µ2+

1
2
k2 σ2

2

)
denotes the true cumulant-generating

function of endowment growth. Equation 27 shows that the expected belief of an agent with

similarity-weighted memory is constant over time as a result of the i.i.d.-structure of the

economy. A constant expectation of the agent’s posterior beliefs implies that belief revisions

are predictable and mean-reverting. If this period’s log endowment growth is very high, such

that the relevant moments of the agent’s posterior beliefs are inflated, then an econometrician

would expect to observe a downward revision of the agent’s beliefs in the next period.

Summary. I find that the agent’s posterior belief under similarity-weighted memory is

time-varying, although the agent has access to infinite data and forms beliefs using infinite

data. Consistent with empirical evidence, I find that (i) the agent’s posterior mean varies

procyclically and overreacts to new information; and that (ii) the agent’s subjective volatility

varies countercyclically. The beliefs are predictably mean-reverting.

3.3 Asset pricing implications

In this section, I examine the equilibrium asset pricing implications of the agent’s subjective

long-term beliefs under similarity-weighted memory, which are time-varying with contempo-

raneous log endowment growth. I first analyze subjectively expected asset prices and then

discuss realized asset prices.
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Subjective asset prices. Proposition 6 characterizes the equilibrium asset prices under

similarity-weighted memory using the subjective cumulant-generating function in Equation

14 and the results from Section 2.3. I focus on power utility for simplicity and give the

results for Epstein and Zin (1989)-preferences in Appendix B.5.

Proposition 6 (Asset prices under similarity-weighted memory). Focus on power utility

(ψ = 1/γ). Under similarity-weighted memory as in Equation 11 and an i.i.d. two-state

Markov-switching process for log endowment growth, it is

rft =− log(β)− log
(
π1 e

−γ µ̂1,t+ 1
2
γ2 σ2

1 + π2 e
−γ µ̂2,t+ 1

2
γ2 σ2

2

)
, (28)

dpt =− log(β)− log
(
π1 e

(λ−γ) µ̂1,t+ 1
2
(λ−γ)2 σ2

1 + π2 e
(λ−γ) µ̂2,t+ 1

2
(λ−γ)2 σ2

2

)
, (29)

ẽrt = dpt + log
(
π1 e

λ µ̂1,t+
1
2
λ2 σ2

1 + π2 e
λ µ̂2,t+

1
2
λ2 σ2

2

)
, (30)

r̃pt = log
(
π1 e

−γ µ̂1,t+ 1
2
γ2 σ2

1 + π2 e
−γ µ̂2,t+ 1

2
γ2 σ2

2

)
+ log

(
π1 e

λ µ̂1,t+
1
2
λ2 σ2

1 + π2 e
λ µ̂2,t+

1
2
λ2 σ2

2

)
− log

(
π1 e

(λ−γ) µ̂1,t+ 1
2
(λ−γ)2 σ2

1 + π2 e
(λ−γ) µ̂2,t+ 1

2
(λ−γ)2 σ2

2

)
. (31)

First, the risk-free rate rft , which is determined by the agent’s subjective belief in equi-

librium, increases in the contemporaneous log endowment growth due to the procyclicality

of the agent’s expectation. The posterior state-wise means µ̂1,t and µ̂2,t both increase in con-

temporaneous log endowment growth gt, so that the cumulant-generating function at −γ,

Kt(−γ) = log
(
π1 e

−γ µ̂1,t+ 1
2
γ2 σ2

1 + π2 e
−γ µ̂2,t+ 1

2
γ2 σ2

2

)
, decreases in gt. However, Kt(−γ) enters

the expression for the risk-free rate negatively, and the risk-free rate increases in gt. Intu-

itively, if contemporaneous log endowment growth is high, the agent selectively recalls past

experiences with a high log endowment growth due to similarity. Thus, the agent becomes

optimistic and expects a high endowment growth going forward. The risk-free rate must

then be high to make saving in a risk-free asset attractive, as is consistent with evidence

(Adam and Nagel, 2023). Moreover, the volatility of the agent’s beliefs leads to a volatile

risk-free rate as empirically observed by Jordà et al. (2019).

Second, the dividend-price ratio of the λ-asset dpt decreases in the contemporaneous log
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endowment growth if λ > γ. As discussed in Section 2.3, the price of the asset increases

in the agent’s posterior mean if the leverage factor λ exceeds the curvature of the utility

function as determined by the risk-aversion parameter γ.21 A decreasing dividend-price

ratio is consistent with evidence showing that the price-dividend ratio (the reciprocal of dpt)

is positively correlated with subjective expectations of future growth (De La O and Myers,

2021; Bordalo et al., 2023b).

Third, the subjectively expected return, which depends on the dividend-price ratio dpt

and on the subjectively expected payout growthKt(λ) = log
(
π1 e

λ µ̂1,t+
1
2
λ2 σ2

1 + π2 e
λ µ̂2,t+

1
2
λ2 σ2

2

)
,

increases in the contemporaneous log endowment growth. The subjectively expected payout

growth is increasing in the agent’s posterior mean and thus in the contemporaneous log

endowment growth. For γ > λ, the dividend-price ratio increases in contemporaneous log

endowment growth, such that both components of the subjectively expected return are in-

creasing in contemporaneous log endowment growth. For γ < λ, instead, the dividend-price

ratio decreases in contemporaneous log endowment growth. However, λ > γ > 0 implies

that the expected payout growth is more sensitive to the agent’s state-wise posterior means

µ̂1,t and µ̂2,t than the dividend-price ratio, such that the increase of the expected payout

dominates the decreasing dpt. Intuitively, the agent is more optimistic after observing a high

contemporaneous log endowment growth, and the risky asset must deliver a high expected

return to induce investment.22 Consistent with survey evidence (Amromin and Sharpe, 2014;

Greenwood and Shleifer, 2014), I thus find a procyclical expected return under similarity-

weighted memory.

Fourth, the subjective risk premium rpt depends on the convexity of the cumulant-

generating function over the interval [−γ, λ], as highlighted by Martin (2013). Under

21In contrast, the price of the asset decreases in the agent’s posterior mean if γ > λ under power utility
preferences, but not under Epstein and Zin (1989)-preferences.

22Figure D.2 in Appendix D shows that an increase in contemporaneous log endowment growth rotates
the subjective cumulant-generating function. As the cumulant-generating function is convex (Martin, 2013),
the effect of an increase in the contemporaneous log endowment growth on the subjective expected return is
not necessarily monotone, and Figure 1 below shows that the expected return is a convex function of gt. The
statements in the main text hold for a second-order approximation of the subjective cumulant-generating
function.
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similarity-weighted memory, however, the convexity of the cumulant-generating function

changes over time with gt. Consider the second-order approximation of the cumulant-

generating function under the agent’s subjective beliefs discussed in Section 2.3, rpt ≈

λ γ Vart (gt+1) = λ γ
(
π1 σ

2
1 + π2 σ

2
2 + π1 π2 (µ̂1,t − µ̂2,t)

2).23 The agent knows the state-wise

variances σ2
1 and σ2

2, but the wedge between the posterior mean of states 1 and 2 is time-

varying with the contemporaneous log endowment growth. The agent’s posterior variance

is a convex function of the contemporaneous log endowment growth. The subjective risk

premium of the agent is, up to a second-order approximation of the subjective cumulant-

generating function, proportional to the unconditional posterior variance, and thus a convex

function of the contemporaneous log endowment growth. The agent requires a high risk pre-

mium in exceptionally good and bad times, while the subjective risk premium is moderate

in intermediate regions of log endowment growth.

Figure 1 displays the risk-free rate, dividend-price ratio, expected return, and subjective

risk premium. In contrast to the discussion so far, I consider a specification of the Epstein

and Zin (1989)-preferences with ψ = 1.5 ̸= 1/γ.24 The qualitative properties of asset prices

highlighted for power utility continue to hold. Under similarity-weighted memory, the risk-

free rate and the price-dividend ratio increase in the contemporaneous log endowment growth

gt, while the subjectively expected return is a convex function of gt due to the effect of higher-

order moments (see Footnote 22). Similarly, the subjective risk premium of the agent is a

convex function of the contemporaneous log endowment growth due to the convexity of the

posterior variance. Under rational expectations, instead, the risk-free rate, price-dividend

ratio, subjective expected return, and subjective risk premium are constant due to the i.i.d.

assumption, as shown by the dashed lines.

Objective asset prices. As noted earlier, the agent’s beliefs are predictable by an

outside observer with access to the same data as the agent. The objectively realized return

23Note that the subjective cumulant-generating function Kt(k) depends on the state-wise posterior means,
µ̂1,t and µ̂2,t. Therefore, the state-wise posterior means enter the expression for the risk premium.

24Importantly, the parameters imply that the agent cares more about the resolution of uncertainty than
about predictable variation in consumption, which becomes important in the simulations below.
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Figure 1: Qualitative asset pricing implications of similarity-weighted memory

Figure 1 shows the risk-free rate, price-dividend ratio, subjectively expected return and subjec-
tively expected risk premium for different values of contemporaneous log endowment growth gt
under rational expectations (dashed line) and under similarity-weighted memory (solid line). The
parameters of the log endowment growth process are as in Table 1, and the preference parameters
are β = 0.95, γ = 10, ψ = 1.5, κ = 0.01.

and the objectively realized risk premium therefore deviate from their subjective counterpart.

Using the Campbell-Shiller decomposition as in Campbell (1991), the objective risk premium

is (see Appendix F)

E (rt+1)− rft = λE(gt+1) +Kt(−γ)−Kt(λ− γ)− p̄

1− p̄
(E (dpt+1)− dpt) , (32)
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with

E(dpt+1) = − log(β)− E [Kt+1(λ− γ)] +

(
1− 1

η

)
E [Kt+1(1− γ)] ,

and p̄ = 1

1+exp(d−p)
with a historical average dividend-price ratio d− p of 4% to 5%, imply-

ing p̄ ≈ 0.95 (Campbell, 2017). The objective risk premium deviates from the subjective

risk premium due to two effects: First, the econometrician’s expected endowment growth

E(gt+1) = π1 µ1+π2 µ2 generally deviates from the subjectively expected endowment growth

Ẽt(gt+1) = π1 µ̂1,t + π2 µ̂2,t. Second, the econometrician expects a revision of the agent’s

beliefs to their long-term mean, which affects the (future) dividend-price ratio of the econ-

omy. For p̄ ≈ 0.95, differences in the expected dividend-price ratio under the objective and

subjective measure are multiplied by p̄
1−p̄ ≈ 19, leading to large fluctuations in the objective

risk premium.

To gain intuition, consider the case of log-normal endowment growth (µ = µ1 = µ2 and

σ = σ1 = σ2), since closed-form solutions exist in this case.25 Under log-normality, it is

E (rt+1)− rft = rpt +

(
1

1− p̄
λ− p̄

1− p̄

1

ψ

)
(µ− µ̂t)−

1

2
λ2 σ2.

Similar to Nagel and Xu (2022), the objective risk premium has three components: The

first term is the subjective risk premium, which is the risk compensation required by the

representative agent in equilibrium. The second term is a sentiment premium. The effect

of the time-varying belief wedge or sentiment µ − µt depends on the leverage of the asset

λ and on the inverse of the EIS ψ−1. If the agent becomes too optimistic, µt > µ, the

econometrician expects a mean reversion of the agent’s beliefs towards µ and a low return

next period. The last term is an adjustment that arises due to the difference between the

agent’s subjective beliefs and the econometrician’s objective beliefs.

25I demonstrate how to approximate the expected subjective cumulant-generating function for the two-
state Markov-switching process in Appendix F.
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Figure 2: Objective and subjective risk premium

Figure 2 shows the objective (orange dashed line) and subjective (blue solid line) risk premium

for different realizations of the contemporaneous log endowment growth gt. The parameters of the

log endowment growth process are as in Table 1, and the preference parameters are

β = 0.95, γ = 10, ψ = 1.5, κ = 0.01.

Figure 2 shows the subjective and objective risk premium for the i.i.d. Markov-switching

process, and highlights that the intuition from the log-normal case discussed above holds:

When the contemporaneous log endowment growth is high, the agent is very optimistic and

the realized risk premium in the next period will, on average, be low. Thus, the objective

risk premium is predictably countercyclical. Moreover, Equation 32 shows that the price-

dividend ratio (the reciprocal of dpt) negatively predicts the realized risk premium. Figure

2 shows that the objective risk premium is low if gt is high, which corresponds to a high

price-dividend ratio as in the top right panel in Figure 1. The objective risk premium is

thus predictably countercyclical using aggregate valuation ratios such as the price-dividend

ratio (Campbell and Shiller, 1988). Additionally, Figure 2 indicates that the subjective risk

premium varies significantly less than the objective risk premium and is effectively acyclical.

The subjective risk premium appears to be a straight line in Figure 2 because the objective

risk premium is two orders of magnitude more volatile than the subjective risk premium

(Nagel and Xu, 2023).

Summary. Similarity-weighted memory explains salient empirical differences of sub-
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jectively expected and objectively realized asset prices, especially patterns of cyclicality,

predictability, and sensitivity to risk measures. First, subjectively expected returns are pro-

cyclical, while objectively realized returns are countercyclical. Second, the subjective risk

premium is acyclical and not predictable by aggregate valuation ratios, while the objective

risk premium is predictable by aggregate valuation ratios. Third, variation in the subjec-

tively perceived riskiness of the economy leads to variation in the subjective risk premium,

while variation of the objective risk premium is unrelated to the constant objective risk or

risk-aversion.

3.4 Calibration and simulation

I next use simulations to analyze the model quantitatively. First, I describe the parameters

of the log endowment growth process and the agent’s preferences. I then simulate asset prices

for two cases. In the first case, I assume that the agent has access to an infinte history Ht.

In the second case, I assume that the agent has access to 30 years of data before “entering”

the market, such that the agent learns from a limited sample.

Parameters. I summarize the parameters used for simulation in Table 1. There are

two types of parameters: endowment growth parameters and preference/belief parameters.

I estimate the parameters of the i.i.d. Markov-switching process for log endowment growth

in Equation 10 using the methods in Johannes et al. (2016), and obtain estimates that are

close to their results. I measure endowment growth using the quarterly growth of services

and non-durable consumption from the Bureau of Economic Analysis from Q1 1947 to Q1

2023 and estimate the parameters with a Markov-Chain-Monte-Carlo (MCMC) method (for

details, see Appendix G.1). The parameters reported in Table 1 are the annualized Bayesian

maximum a-posterior parameters among 10, 000 parameter combinations. Furthermore, I

estimate the leverage parameter λ by regressing quarterly aggregate dividends obtained

from CRSP on endowment growth and find λ ≈ 3.29, which is close to λ = 3 used in

Collin-Dufresne et al. (2016) and Nagel and Xu (2022). I use λ = 3 for comparability.
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Table 1: Calibration parameters

Parameter Symbol Value Source

Endowment growth process
Mean growth in
State 1 µ1 1.96% Estimated
State 2 µ2 0.64% Estimated

Growth volatility in
State 1 σ1 0.90% Estimated
State 2 σ2 4.76% Estimated

Probability of state 1 π1 0.86 Estimated
Leverage λ 3.00 Nagel and Xu (2022)

Preferences and memory
Risk aversion γ 10 Jin and Sui (2022)
EIS ψ 1.5 Nagel and Xu (2022)
Time discount factor β 0.9967 Nagel and Xu (2022)
Memory scrutiny κ 0.01 -

Table 1 reports the parameters used in the simulation. The parameters of the endowment growth
process are estimated using the methods in Johannes et al. (2016) and annualized by multiplying
means by four and standard deviations by 2. For the preference parameters, most values are the
same as in Jin and Sui (2022) and Nagel and Xu (2022). Memory scrutiny κ is set to be of the
same magnitude as the volatility of endowment growth.

For the preference parameters, I mostly follow previous papers and set γ, the relative risk-

aversion coefficient, to ten (Jin and Sui, 2022).26 Next, I set ψ, the elasticity of intertemporal

substitution (EIS), to 1.5. There is a range of different values for the EIS in the asset pricing

literature, but the majority of papers uses values above one (Beeler and Campbell, 2012).27

Finally, I set β, the discount factor, to 0.9967 as in Nagel and Xu (2022), and κ, the scrutiny

parameter to 0.01, so that memory scrutiny is of the same order of magnitude as the volatility

of endowment growth. Assuming κ = 0.01 implies that α1 = 0.002 and α2 = 0.053, such

that the agent’s posterior mean is not too sensitive to gt.
28

26The long-run risk literature often assigns value of up to ten to the relative risk-aversion coefficient, and
Mehra and Prescott (1985) argue that values up to and around ten are reasonable. Lowering the relative
risk-aversion to γ = 4 (Nagel and Xu, 2022) yields a subjective risk premium of approximately 0.5 in the
case without parameter uncertainty shown in Table 2, but otherwise does not affect the results qualitatively.

27Lowering ψ to one yields a higher risk-free rate and subjectively expected return, but leaves the sub-
jective risk premium in the case without parameter uncertainty unchanged. Setting ψ > 1 simplifies the
numerical calibrations of the case with parameter uncertainty.

28For κ = 0.1 (0.001, 0.0001), it is α1 = 0.0002 (0.0198, 0.1684) and α2 = 0.0055 (0.3577, 0.8478). The
parameter κ does not affect the qualitative implications, but has quantitative implications. If the agent’s
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Simulation. I simulate the model at a quarterly frequency. Table 2 reports the annual-

ized average moments from 10, 000 simulations of the model, each for 304 quarters. The left

panel shows that the model can qualitatively match salient facts about asset prices.

Figure 3 shows the posterior beliefs from one realization of the endowment growth process.

In combination with Table 2, Figure 3 shows that the agent’s posterior mean of the good state

µ̂1,t, which is the state that is more frequently observed, is unbiased, while the posterior mean

of the recession state is biased upward and fluctuates more strongly than µ̂1,t. Furthermore,

the posterior variance of the agent in the right panel of Figure 3 tends to spike during

recessions (the vertical lines) and is slightly higher during recessions than during normal

times. Subjective volatility is negatively correlated with endowment growth, such that the

agent perceives a more risky economy in bad times than in good times. The bottom row

of Table 3 shows the coefficient of a Coibion and Gorodnichenko (2015)-regression as in

Proposition 5 and indicates a marginal overreaction of the agent’s beliefs in that bCG < 0.29

The left panel of Table 2 shows that the risk-free rate and the subjectively expected return

are procyclical (positive correlation with endowment growth). Furthermore, the subjective

risk premium is almost constant (average standard deviation of 0.005%), does not vary across

normal times (average of 1.199%) or recessions (average of 1.204%), and is not predictable by

the dividend-price ratio (Table 3). Consistent with empirical evidence, the subjective risk

premium is acyclical with respect to aggregate valuation ratios (Adam and Nagel, 2023).

However, because the subjective volatility changes over time, the subjective risk premium

is correlated with the contemporaneous log endowment growth under similarity-weighted

memory, and Nagel and Xu (2023) find evidence of a positive risk-return trade-off in the

subjective risk premium.

beliefs react too strongly to gt, an equilibrium might not exist as the agent might be too optimistic and does
not invest in the risky asset.

29Using conventional t-Statistics, I cannot reject the null that bCG = 0 in the sample. In unreported
results, I confirm that increasing the sample size leads to bCG → −0.5 with high t-Statistics. Moreover,
Mincer-Zarnowitz regressions yield bMZ ≈ 0, and I cannot reject the null of bMZ = 0 using conventional
t-Statistics.
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Table 2: Simulation results with baseline parameters

No parameter uncertainty Parameter uncertainty
Symbol Total Normal Recession Total Normal Recession

Endowment growth
gt 1.774 1.961 0.626 1.777 1.960 0.652
Std (gt) 1.958 0.901 4.725 1.958 0.900 4.719

Beliefs
µt 1.783 1.960 0.700 1.782 1.959 0.697
Std (µ̂t) 0.018 0.004 0.103 0.056 0.027 0.353

σ̂t 1.966 1.965 1.968 1.985 1.984 1.990
corr(σ̂t, gt) −0.970 −0.999 −0.969 −0.319 −0.045 −0.001

Subjective asset prices
ert 3.385 3.386 3.381 3.288 3.256 3.480
Std (ert) 0.009 0.001 0.021 0.902 2.213 3.474
corr (ert, gt) 0.999 1.000 0.999 0.419 0.010 0.004

rft 2.186 2.187 2.178 2.174 2.180 2.136

Std(rft ) 0.027 0.012 0.065 0.686 0.848 0.902

corr(rft , gt) 0.999 1.000 0.999 0.497 0.069 0.326

rpt 1.199 1.199 1.204 1.114 1.076 1.344
Std(rpt) 0.005 0.002 0.002 1.217 2.410 3.660
corr(rpt, gt) −0.990 −1.000 −0.990 −0.381 −0.005 −0.057

Objective asset prices
rpt 0.998 0.776 2.360 3.209 1.768 12.054
Std(rpt) 2.237 1.027 5.397 26.864 42.188 69.590
corr(rpt, gt) −1.000 −1.000 −1.000 −0.348 −0.112 −0.399

Table 2 reports the model moments obtained from 10, 000 simulations of the model for 304 quarters.
The left panel (No parameter uncertainty) reports results under the assumption that the agent has
an infinite sample of observations, while the right panel (Parameter uncertainty) reports results
when the agent learns from a finite sample, such that the Bayesian posterior has a strictly positive
variance around the parameter values. I use a burn-in period of 120 quarterly observations in the
parameter uncertainty simulations. For each of the 10, 000 economies, I draw 10 realizations of the
agent’s memory and average them over the realizations. Returns and expectations are annualized
as follows: the means are multiplied by four and the standard deviations are multiplied by two.
For the risk-free rate, I multiply the quarterly mean and the standard deviation by four.

In contrast to the subjective risk premium, the objective risk premium varies more

strongly (standard deviation of 2.237%), but is lower than the subjectively expected risk
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Figure 3: Posterior long-term beliefs

Figure 3 shows the annualized posterior beliefs of the agent for one realization of log endowment
growth. The left (middle) panel shows the posterior mean of log endowment growth in the good
state (bad state) and the right panel shows the subjective volatility. The dash-dotted line in each
panel plots the respective quantity under full-information rational expectations, and the vertical
lines mark realized bad states. The parameters are as in Table 1, except that I use p1 = 0.96.

Table 3: Predictability and Coibion and Gorodnichenko (2015)-regressions

No parameter uncertainty Parameter uncertainty

RPSubj RPObj b̂CG RPSubj RPObj b̂CG

dpt 0.002 1.119 0.002 3.372(
Ẽt −Et−1

)
gt+1 −0.026 −0.394

Table 3 reports the mean estimates from regressions for 10, 000 simulations of the model for 304
quarters plus a 120 quarters burn-in period in the parameter-uncertainty case. The first row shows
the mean coefficients when regressing subjectively expected and objectively obtained risk premia on
the log dividend-price ratio, as in Nagel and Xu (2023). The price-dividend ratio is rescaled to unit
standard deviation. The second row shows the mean estimate from Coibion and Gorodnichenko
(2015)-regressions of the forecast error on the forecast revision. The left (right) panel shows the
results obtained without (with) parameter uncertainty.

premium with an average of 0.998%. The countercyclicality of the objective risk premium

is pronounced, since the objective risk premium is lower in normal times (0.776%) than in

recessions (2.360%). Table 3 shows that the objective risk premium is predictably counter-

cyclical using the dividend-price ratio (b̂obj = 1.119). The high volatility and predictability

of the objective risk premium is consistent with empirical findings in Nagel and Xu (2023)

and Campbell and Shiller (1988).
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Table E.1 in Appendix E shows the average subjective and objective risk premium for

each quantile of log endowment growth. The subjective risk premium is almost constant

across quantiles, but the objective risk premium is high in the lowest quantile of endowment

growth (6.42%), and becomes negative in the highest quantile (−3.91%), consistent with

empirical results that find negative excess returns in times of high sentiment (Greenwood

and Hanson, 2013; Cassella and Gulen, 2018).

Asset prices in an economy with similarity-weighted memory distortions are qualitatively

consistent with stylized facts, but the objectively realized risk premium is comparably low.

The results in Section 3.3 show that the objective risk premium depends on the predictability

of the agent’s subjective beliefs. Under the assumption that the agent already observed an

infinitely long history of past log endowment growth, the agent’s beliefs solely depend on

next period’s log endowment growth, which is very smooth (Mehra and Prescott, 1985).

Therefore, I next simulate asset prices when the agent learns from finitely many observa-

tions, which yields Bayesian parameter uncertainty as well as more volatile beliefs. Collin-

Dufresne et al. (2016) show that the parameter uncertainty emerging from Bayesian learning

endogenously generates long-run risk and thus a high risk premium. I show that parameter

uncertainty under similarity-weighted memory yields a realistically high risk premium and

matches the aforementioned qualitative features of asset prices.

The agent’s beliefs and asset prices must be simulated when the agent learns from finitely

many observations (see Appendix G.2).30 As before, I simulate the model 10, 000 times for

304 quarters. For each quarter and each simulation, I draw the agent’s recalled observations

ten times according to the similarity-weighted memory function (Equation 11). Throughout

the simulations, I focus on the case in which the agent’s prior is uninformative and generate

120 quarterly log endowment growth realizations as burn-in period, such that the agent has

access to 30 years of data before “entering” the market.

Figure 4 plots one realization of the agent’s beliefs and shows that the agent’s beliefs

30We can obtain closed-form solutions for ψ = 1 and log-normal endowment growth µ1 = µ2 and σ1 = σ2,
which I derive in Appendix G.2.
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Figure 4: Posterior beliefs with parameter uncertainty

Figure 4 shows one time-series realization of the agent’s posterior beliefs when allowing for pa-
rameter uncertainty. The left panel shows the beliefs about µ1, and the middle panel shows the
beliefs about µ2. In both panels, the solid blue line shows the posterior with a limited number of
observations, while the orange dotted line shows the beliefs in the t → ∞-limit. The horizontal
green dashed line plots the fundamentally true mean µs, and the vertical grey lines mark recession
periods. The right panel plots the parameter uncertainty zs,t against the endowment growth gt. I
focus on an uninformative prior νs → 0. The simulation parameters are as in Table 1.

when learning from a limited sample are more volatile than in the t → ∞-case, but the

averages are close. Similarly, the properties of the subjective volatility discussed above

hold under parameter uncertainty with a lower correlation of subjective volatility and log

endowment growth. The bottom row of Table 3 shows that the agent’s beliefs overreact

more when learning from a limited sample (right panel), with a Coibion and Gorodnichenko

(2015)-regression coefficient of b̂CG = −0.419.

The invariance of the qualitative features of beliefs when going from t→ ∞ to a limited-t

implies that the qualitative features of asset prices discussed above hold under parameter

uncertainty, but the quantitative fit is improved. Measuring the risk premium as the differ-

ence between the log market return and the log risk-free rate—as in my model—Campbell

and Cochrane (1999) report a long-term average realized risk premium of 3.90% (see also Jin

and Sui, 2022). Using the long-term data by Jordà et al. (2019), I estimate a risk premium

of between 1.07% (Portugal) and 7.33% (Germany), with the US being at 4.46%. In postwar

data, the risk premium is higher and Campbell and Cochrane (1999) report a realized risk
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premium of 6.69%, while I estimate a risk premium of 5.90% using data by Nagel and Xu

(2023) from December 1949 until July 2021. In the simulations, I obtain an average realized

risk premium of 3.21%, which is close to the long-term risk premium and to the results

reported by Jin and Sui (2022). Moreover, using the data by Nagel and Xu (2023) and the

NBER recession indicator, I find an average risk premium of 5.13% in normal times and

of 10.95% in recessions. Similarly, in the simulations, I obtain a considerably higher risk

premium during recessions (12.05%) than during normal times (1.77%).

In the simulations, I find an average subjective risk-premium of 1.11%, which does not

vary much across normal times (1.08%) and recessions (1.34%). Using the data by Nagel and

Xu (2023), the subjective risk premium of individual investors—measured using log return

expectations minus the log risk-free rate—is higher than in the simulations with 5.63%, but

it also barely varies across normal times (5.55%) and recessions (6.20%).31 In addition, I

obtain a risk-free rate of 2.17%, which is relatively constant across normal times (2.18%) and

recessions (2.14%) in the simulations. Empirically, the log risk-free rate is at about 3.96%

in postwar data, and at about 4.29% in historical long-term data (Jordà et al., 2019), with

a low variation across normal times (4.02%) and recessions (3.69%).

Finally, using the data by Nagel and Xu (2023), who obtain a measure of the perceived

variance using the Graham-Harvey CFO survey, I find an average perceived volatility of

12.98, which is higher during recessions (15.14) than during normal times (12.79). Moreover,

regressing the square root of the perceived volatility on a the probability of being in a

recession under the maintained assumption of an i.i.d. two-state endowment growth rate

process, I find a statistically significant and positive regression coefficient, indicating that

there might be a quadratic relation between the state of the economy and the perceived

riskiness of the economy, as predicted by the model.

31I use a different measure of crisis here. Consistent with the estimation of the parameters of the con-
sumption process, I obtain the Bayesian posterior probability of being in normal times under the maintained
assumption of a two-state i.i.d. Markov chain. A period is a crisis if the probability of being in the good
state is below 0.5. This crisis measure has a high overlap with NBER recession periods and does not affect
the previous results that used the NBER recession indicator qualitatively.
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Overall, departing from rational expectations by considering subjective beliefs that arise

from similarity-weighted memory can qualitatively explain the mismatch of subjective and

objective asset prices regarding their cyclicality, predictability, and sensitivity to risk mea-

sures. In addition, subjective beliefs under similarity-weighted memory generate a realisti-

cally high risk premium and risk-free rate.

4 Peak-end memory

I next demonstrate the flexibility of the general model introduced in Section 2 by analyzing

another memory distortion. From now on, I assume that the agent is more likely to recall

extreme observations as well as observations that are similar to today‘s observation, leading

to a peak-end memory distortion (Kahneman, 2000). Psychologically, the peak-end mem-

ory distortion analyzed here is consistent with the literature on experience effects, which

highlights the long-term influence of extreme experiences on risk taking (Malmendier and

Nagel, 2011), inflation expectations (Malmendier and Nagel, 2016), managerial decisions

(Malmendier et al., 2011), and real estate purchases (Happel et al., 2023). Emotional events

are more likely to be stored in memory (Kensinger and Ford, 2020) and retrieved more vividly

(flashbulb memories, see Phelps, 2006). Additionally, the end of an experience is generally

more memorable than the beginning and middle (recency effect, Kahana, 2012; Barberis,

2018; Wachter and Kahana, 2023). I next outline the setup and discuss the implications of

the peak-end memory distortion on the agent’s beliefs and asset prices afterwards.

4.1 Framework

Consider log-normal endowment growth

gt = µ+ σ ϵt, ϵt
i.i.d.∼ N (0, 1) . (33)
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The agent knows that endowment growth is i.i.d. log-normally distributed, but learns the

mean µ and volatility σ from her recalled historyHR
t . The agent’s recalled history is distorted

by the memory function

mPE (gτ , gt) := exp

[
−e−

(gτ−µ)2

2σ2

]
︸ ︷︷ ︸
Extreme experience bias

· exp
[
(gτ − gt)

2

2κ

]
︸ ︷︷ ︸

Similarity

. (34)

The extreme experience bias models the higher likelihood of recalling extreme observations.

The inner exponential, e−
(gτ−µ)2

2σ2 , is proportional to the probability density function (pdf) of a

normal distribution, with higher values close to the true mean µ and lower values in the tails

of the distribution. The outer exponential around the pdf of the normal distribution implies

that the center of the distribution—values around µ—are underweighted, while values in the

tails of the distribution are overweighted.32 The similarity term models the higher likelihood

of recalling experiences at the end of the realized history Ht.
33 Figure D.3 plots the memory

function.

4.2 Subjective long-term beliefs and asset prices

I next analyze the agent’s subjective long-term beliefs under the peak-end memory function

and highlight the implications for asset prices. Closed-form solutions for the agent’s long-

term belief do not exist under the memory function in Equation 34, such that I mostly

discuss the impact of the extreme experience bias. The effect of the similarity term on the

agent’s beliefs and asset prices is as in Section 3.

Subjective beliefs. The agent is more likely to recall extreme experiences and expe-

riences that are similar to the time-varying end of the realized history Ht. The extreme

32A more formal motivation for the functional form comes from the cumulative distribution function of
the Gumbel distribution, which is the limiting distribution of the maximum of sequences of independent
normal variables, see Appendix C.1.

33An alternative formulation could explicitly overweight experiences as a function of the passage of time,
t− τ . However, the proof of Proposition 1 in Section 2.2 uses the almost sure convergence of the empirical
distribution of past experiences to the memory-weighted distribution under the law of large numbers, which
does not hold if the agent deterministically forgets past experiences.
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experience bias does not systematically affect the posterior mean of the agent since both

tails of the distribution of log endowment growth are overweighted symmetrically, but an

extreme experience bias leads to an increased posterior variance.34 Appendix C.3 shows that

a pure extreme experience bias yields µ̂t = µ and σ̂2
t ≈ 1.41 · σ2 > σ2.

Figure 5 shows the posterior mean and variance of the agent under the peak-end mem-

ory distortion given in Equation 34. I provide a numerical approximation of the agent’s

posterior mean in Appendix C.4. The agent’s posterior mean is an increasing function of

the contemporaneous log endowment growth gt, since the posterior mean under the peak-

end memory distortion varies only due to the similarity-term. The right panel of Figure 5

shows the posterior variance of the agent. Under peak-end memory, the posterior variance

is higher than the true variance of the process due to the overweighting of extreme obser-

vations. Moreover, the posterior volatility is concave in contemporaneous log endowment

growth with a maximum at gt = µ due to the combination of extreme experience bias and

similarity-weighting: If gt = µ, the memory function is identical to a pure overweighting of

extreme experiences, and the posterior variance of the agent is σ̂2
t ≈ 1.41 · σ2. If gt ̸= µ, the

agent recalls more endowment growth rates that are close to gt, shifting the mass of recalled

experiences closer to one tail of the distribution, which reduces the posterior variance. The

reduction is stronger the more the mass is shifted towards one tail of the distribution.

Asset pricing implications. I next analyze the effect of the peak-end memory distor-

tion on asset prices using the framework in Section 2.3. The cumulant-generating function

of log endowment growth under the agent’s time-t belief is given by

KPE
t (k) = log Ẽt

(
ek gt+1

)
= k µ̂t +

1

2
k2 σ̂2

t , (35)

34In line with Proposition 1, extreme experience bias does not induce a covariance between the propensity

of recalling an experience and the value of log endowment growth, Cov
[
g,1{g∈HR

t }

]
= 0, but an extreme

experience bias induces a positive covariance between the propensity of recalling an experience and the tails

of the distribution, Cov
[
(g − µ̂t)

2,1{g∈HR
t }

]
> 0.
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Figure 5: Posterior beliefs under peak-end memory

Figure 5 shows the posterior mean and variance of an agent with peak-end memory distortions as
in Equation 34 for varying levels of contemporaneous endowment growth gt. The parameters are
µ = 0.44%, σ = 1.31%, and κ = 0.01.

and I insert numerical estimates of µ̂t and σ̂
2
t to obtain subjective asset prices.

As in Section 3.4, I simulate the model 10, 000 times for 304 quarters and report average

moments in Table 4. The parameters of the log endowment growth process are as in Nagel

and Xu (2022) with a quarterly mean endowment growth of µ = 0.44% (annualized: 1.76%)

and a quarterly volatility of σ = 1.31% (annualized: 2.62%). All other parameters are as in

Table 1.

The simulation results in Table 4 highlight that the agent’s posterior mean is an unbiased

estimate of the true mean, with an average posterior mean of 1.760%, and is relatively stable

with an average standard deviation of 0.063%. Time-variation in the agent’s posterior mean

is entirely driven by the similarity component of the memory function in Equation 34, such

that the agent’s posterior mean is perfectly correlated with this period’s endowment growth

gt, leading to procyclical beliefs. Table E.2 in Appendix E shows the results of a Coibion

and Gorodnichenko (2015)-regression and highlights that the agent’s beliefs overreact to

new information as in Section 3.4. The higher likelihood of recalling extreme experiences

leads to a higher posterior (σ̂t = 3.096%) than fundamental volatility (σ = 2.620%). The

posterior volatility is very stable (standard deviation < 0.001%) and not correlated with
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Table 4: Asset prices under the peak-end memory distortion

Symbol Mean Std. Corr. with gt

Endowment growth and subjective beliefs
gt 1.759 2.620 1.000
µ̂t 1.760 0.063 1.000
σ̂t 3.096 < 0.001 < 0.001
Subjective asset prices
ert 4.604 0.042 1.000

rft 1.729 0.084 1.000
rpt 2.875 < 0.001 < 0.001
Objective asset prices
rpt 2.573 19.063 −1.000

Table 4 reports the model moments obtained from 10, 000 simulations of the model for 304 quarters.
I annualize the quantities as follows: Means are multiplied by four and the standard deviations are
multiplied by two. For the risk-free rate, I multiply the quarterly mean and the standard deviation
by four.

contemporaneous log endowment growth gt.

The qualitative asset pricing implications of the peak-end memory distortion are as under

similarity-weighted memory discussed in Section 3, because the time-variation in the agent’s

subjective long-term beliefs is due to the similarity component. The extreme experience

bias inherent in the peak-end rule, however, affects the subjective risk premium. The agent

is more likely to recall extreme past endowment growth observations, such that the agent

perceives the economy as very risky. Being risk-averse, the agent must be compensated

for holding a risky asset, and the extreme experience bias thus leads to a high subjective

risk premium. Moreover, since the posterior volatility of the agent is very stable (standard

deviation < 0.001), the subjective risk premium is almost constant and not predictable using

aggregate valuation ratios (see Table E.2).

The analysis of the peak-end memory distortion in this Section suggests that selective

memory can not only explain qualitative features of beliefs and asset prices as in Section 3,

but can parsimoniously generate a realistically high subjective and objective risk premium.

A large literature on experience effects as summarized in Malmendier and Wachter (2022)

and on the memorability of emotional events (Kensinger and Ford, 2020) argues that extreme
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experience leave “scars” that have a long-lasting effect on beliefs. The model here shows that

the same memory mechanism—the higher likelihood of recalling extreme experiences—can

explain why financial markets are perceived as risky and thus generate a high risk premium.

5 Conclusion

In this paper, I explore the implications of selective memory for asset prices and show that

similarity-weighted selective memory simultaneously accounts for important facts about be-

lief formation, survey data, and asset prices. With i.i.d. fundamentals and constant risk-

aversion, my model explains empirically observed discrepancies between subjectively ex-

pected and objectively realized returns using a simple mechanism: The agent selectively

recalls past observations of the fundamental that are similar to its contemporaneous real-

ization. A good realization of the fundamental causes the agent to become too optimistic

and to expect a high future growth with a low volatility, leading to a high expected return.

The agent’s optimism implies that asset prices today rise too much, and returns following a

good realization of the fundamental are predictably low, although the fundamental risk in

the economy and the agent’s risk aversion are constant.

My framework can be used to analyze further selective memory distortions, and I demon-

strate this flexibility by considering a peak-end memory distortion under which the agent

additionally overremembers extreme past observations, consistent with the experience ef-

fects literature. Under the peak-end memory distortion, the subjective risk premium is high

because the agent perceives the economy as risky. The framework could also be applied to

active learning problems in a portfolio choice context (Gödker et al., 2022; Fudenberg et al.,

2023), to agents who access false memories, or to heterogeneous agents.

This paper complements empirical evidence from finance (Bordalo et al., 2023b; Jiang

et al., 2023; Nagel and Xu, 2023), experiments (Burro et al., 2023; Enke et al., 2023), and

cognitive psychology (Kahana, 2012) by showing that selective—and especially similarity-
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weighted—memory theoretically explains conceptually puzzling patterns of subjective and

objective asset prices without resorting to time-varying risk-aversion, long-term risk, or dis-

aster risk. The emerging pattern suggests that selective memory systematically affects ag-

gregate economic outcomes, such as asset prices. Understanding the role of memory in the

formation of subjective beliefs could help researchers, practitioners, and policy makers to

make sense of aggregate asset prices.
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A Proofs for Section 2

A.1 Proposition 1

I explicitly solve for the parameters of the maximizers of the memory-weighted likelihood.

For simplicity, I focus on the case where S is a singleton, such that I do not condition on

the state. The result holds state-wise, as the agent makes state-wise inference.

First, I ensure that the memory-weighted true probability distribution integrates to one

by defining the integration constant

M =
∑
s∈S

ψ(s)

∫ ∞

−∞
m(gs,tt)(g, s) q

∗
s(g) dg.

With the transformed memory function m̃(gs,tt)(g, s) =
1
M
m(gs,tt)(g, s), we can solve the dual

problem

LM(gt, st) = argmin
q∈Q

(
−M

∑
s∈S

ψ(s)

∫ ∞

−∞
m̃(gs,tt)(g, s) q

∗
s(g) log qs (g) dg

)

= argmin
q∈Q

(
−M

∑
s∈S

ψ(s)

∫ ∞

−∞
m̃(gs,tt)(g, s) q

∗
s(g) log

[
1√

2 π σ2
e−

(g−µ)2

2σ2

]
dg

)

= argmin
q∈Q

(
−M

∑
s∈S

ψ(s)

∫ ∞

−∞
m̃(gs,tt)(g, s) q

∗
s(g)

[
− log(2π)

2
− log(σ2)

2
− (g − µ)2

2σ2

]
dg

)

= argmin
θ∈Θ

(
M

log(2π)

2
+M

log(σ2)

2
+M

σ̃2
m + (µ̃m − µ)2

2σ2

)
,

where the last line follows by noting that the integral of the memory-weighted density over the

real line is one due to the rescaling, and where I defined the mean and variance of endowment

growth under the memory-weighted density by µ̃m and σ̃2
m, respectively. Evaluating the

first-order conditions, the distribution that maximizes the memory-weighted likelihood has

parameter θLM = (µLM , σ
2
LM) given by

µLM = µ̃m,
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σ2
LM = σ̃2

m.

The parameter space Θ is closed and convex (see definition of ΘN in Section 2.1), such that

these parameters are unique.

A consistent and unbiased estimator of µ̃m, the mean of the memory-weighted true prob-

ability distribution, is the sample mean µ̂t when drawing from the memory-weighted true

probability distribution, µ̂t =
1

|HR
t |
∑t

τ=−∞ gτ1{gτ∈HR
t }. Now, the sample mean almost surely

equals it’s expected value if the sample is infinite, such that for τ0 → −∞

µ̂t =E
[ 1

|HR
t |

t∑
τ=τ0

gτ1{gτ∈HR
t }

]
=E
[ 1

|HR
t |

]
E
[ t∑
τ=τ0

gτ1{gτ∈HR
t }

]
+ Cov

[ 1

|HR
t |
,

t∑
τ=τ0

gτ1{gτ∈HR
t }

]
︸ ︷︷ ︸

0 for τ0→−∞

=E
[ 1

|HR
t |

] t∑
τ=τ0

µ ·m(gt,st)(gτ , sτ ) + E
[ 1

|HR
t |

] t∑
τ=τ0

Cov
[
g,1{g∈HR

t }

]
=µ · E

[ 1∑t
τ=τ0

1{gτ∈HR
t }

]
·

t∑
τ=τ0

E
(
1{gτ∈HR

t }

)
+ E

[ 1

|HR
t |

] t∑
τ=τ0

Cov
[
g,1{g∈HR

t }

]
=µ · E

[ 1∑t
τ=τ0

1{gτ∈HR
t }

]
· E

(
t∑

τ=τ0

1{gτ∈HR
t }

)
+ E

[ 1

|HR
t |

] t∑
τ=τ0

Cov
[
g,1{g∈HR

t }

]
=µ+ E

[ t

|HR
t |

]
· Cov

[
g,1{g∈HR

t }

]
. (A.1)

Note that the last step follows since |HR
t | = ∞ deterministically for τ0 → −∞.

Similarly, an estimator of the variance of the memory-weighted true probability distribu-

tion is the sample variance, σ̂2
t = 1

|HR
t |
∑t

τ=1(gτ1{gτ∈HR
t } − µ̂t)

2, which almost surely equals

it’s expected value for τ0 → −∞

σ̂2
t =E

[ 1

|HR
t |

t∑
τ=τ0

1{gτ∈HR
t }(gτ − µ̂t)

2
]
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=E
[ 1

|HR
t |

]
E
[ t∑
τ=τ0

1{gτ∈HR
t }
(
gτ − µ̂t

)2]
=E
[ 1

|HR
t |

] t∑
τ=τ0

E
[
1{gτ∈HR

t }
]
E
[
(gτ − µ̂t)

2
]
+ Cov

(
1{g∈HR

t }, (g − µ̂t)
2
)
. (A.2)

We now solve for

E
[
(gτ − µ̂t)

2
]
= E

[
(gτ − µ)2

]︸ ︷︷ ︸
=σ2

−2 E
[
(gτ − µ)(µ̂t − µ)

]︸ ︷︷ ︸
(a)

+E
[
(µ̂t − µ)2

]︸ ︷︷ ︸
(b)

,

where I added and subtracted the true mean µ. We now evaluate (a) and (b) in turn:

(a) E
[
(gτ − µ)(µ̂t − µ)

]
= E

[
(gτ − µ)

]︸ ︷︷ ︸
=0

E
[
(µ̂t − µ)

]
+ Cov

(
(gτ − µ), (µ̂t − µ)

)
= Cov

(
gτ ,

1

|HR
t |

t∑
j=τ0

gj1{gj∈HR
t }
)

=
1

|HR
t |︸ ︷︷ ︸

= 1
∞ for τ0→−∞

Cov
(
gτ , gτ1{gτ∈HR

t }
)︸ ︷︷ ︸

<σ2<∞

= 0.

From the second to the third line, I used the assumptions that (1) gτ is i.i.d. and (2) that

the memory of gj, j ̸= τ is independent of gτ . Next, note that for τ0 → −∞, we have that

µ̂t = E(µ̂t) almost surely, such that we find

(b) E
[
(µ̂t − µ)2

]
= E

[
(E(µ̂t)− µ)2

]
= E

[(
E
[ t

|HR
t |
]
· Cov

[
g,1{g∈HR

t }
])2]

=
(
E
[ t

|HR
t |
]
· Cov

[
g,1{g∈HR

t }
])2

= (µ̂t − µ)2 .
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Overall, we thus have

E
[
(gτ − µ̂t)

2
]
= σ2 + (µ̂t − µ)2 ,

and inserting into Equation A.2 yields the claim.
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B Proofs for Section 3

B.1 Proposition 2

I derive the posterior belief of an agent with similarity-weighted memory as given by Equation

11. Note that the state s ∈ {1, 2} follows an observable Markov chain, such that the agent

performs state-wise inference. The memory-weighted probability distribution is given by

m(g, gt) · q(g|sτ = s) =
1

zt
exp

[
−(g − gt)

2

2κ

]
exp

[
−(g − µs)

2

2σ2
s

]

=
1

z
exp

−g2 − 2 κµs+σ2
s gt

κ+σ2
s

g +
κµ2s+σ

2
s g

2
t

κ+σ2
s

2 κσ2
s

κ+σ2
s


with integration constant z. The exponential term is Gaussian with

µ̂s,t =
κµs + σ2

s gt
κ+ σ2

s

=
κ

κ+ σ2
s

µs +
σ2
s

κ+ σ2
s

gt = (1− αs)µs + αs gt, and

σ̂2
s,t =

κσ2
s

κ+ σ2
s

= (1− αs)σ
2
s ,

with αs :=
σ2
s

κ+σ2
s
. The prior support of the agent contains all normal distributions. Therefore,

the unique maximizer of the memory-weighted likelihood given in Equation (2) is the normal

distribution N (µ̂s,t, σ̂s,t), see Proposition 1. An alternative, but slightly longer, proof that

explicitly uses Proposition 1 is available.

B.2 Proposition 3

It is

E [µ̂s,t+1|st+1 = s] = E
[
(1− αst+1)µst+1 + αst+1 gt+1|st+1 = s

]
= (1− αst+1)µs + αst+1 E[gt+1|st+1 = s]

= µs,
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for s ∈ {1, 2}. Denote the other state by s− (s− = 2 if s = 1) and

E
[
µ̂s−,t+1|st+1 = s

]
= E

[
(1− αs−)µs− + αs− gt+1|st+1 = s

]
= (1− αs−)µs− + αs− E[gt+1|st+1 = s]

= µs− + αs−
(
µs − µs−

)
.

Combining both expressions, it is

E [µ̂s,t+1] = πs E [µ̂s,t+1|st+1 = s] + (1− πs)E [µ̂s,t+1|st+1 = s−] ,

and inserting yields the claim in Proposition 3.

B.3 Proposition 4

On average, the posterior variance of endowment growth gt+1 is

E [Vart (gt+1)] = π1 σ
2
1 + π2 σ

2
2 + π1 π2 E

[
(µ̂1,t − µ̂2,t)

2] .
In addition, it is

E (µ̂1,t − µ̂2,t) = (µ1 − µ2) [1− (α1 π2 + α2 π1)]

Var (µ̂1,t − µ̂2,t) = Var [(1− α1)µ1 − (1− α2)µ2 + (α1 − α2)gt] = (α1 − α2)
2 Var(gt).

By the i.i.d. process and the definition of variance, we can rewrite

E [Vart (gt+1)] =π1 σ
2
1 + π2 σ

2
2 + π1 π2

[
(α1 − α2)

2 Var(gt+1) + (µ1 − µ2)
2 [1− (α1 π2 + α2 π1)]

2]
=
(
π1 σ

2
1 + π2 σ

2
2

) [
1 + π1 π2 (α1 − α2)

2]
+ (µ1 − µ2)

2 π1 π2
[
π1 π2 (α1 − α2)

2 + [1− (α1 π2 + α2 π1)]
2] .
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The average perceived riskiness of the agent is larger than the true fundamental riskiness

if

E [Vart (gt+1)] ≥ Var (gt+1)

⇐⇒ E
[
(µ̂1,t − µ̂2,t)

2] ≥ (µ1 − µ2)
2

⇐⇒ (α1 − α2)
2 Var(gt+1) ≥ (µ1 − µ2)

2 (1− [1− (α1 π2 + α2 π1)]
2)

⇐⇒ (α1 − α2)
2
(
π1 σ

2
1 + π2 σ

2
2

)
≥ (µ1 − µ2)

2 [2 (π2 α1 + π1 α2)− π2 α
2
1 − π1 α

2
2

]
⇐⇒ (α1 − α2)

2 (π1 σ
2
1 + π2 σ

2
2)

2 (π2 α1 + π1 α2)− (π2 α2
1 + π1 α2

2)
≥ (µ1 − µ2)

2 ,

where dividing by (2 (π2 α1 + π1 α2)− (π2 α
2
1 + π1 α

2
2)) does not change the inequality since

2 (π2 α1 + π1 α2) > π2 α
2
1 + π1 α

2
2.

The upper bound on the expected subjective variance is found as

E [Vart (gt+1)]

Var(gt+1)
=
Var(gt+1) + π1 π2 (α1 − α2)

2 Var(gt+1)

Var(gt+1)

+
π1 π2 (µ1 − µ2)

2 [−2 (α1 π2 + α2 π1) + (α1 π2 + α2 π1)
2]

Var(gt+1)

= 1 + π1 π2︸︷︷︸
≤0.25

(α1 − α2)
2︸ ︷︷ ︸

≤1

+(α1 π2 + α2 π1 − 2)︸ ︷︷ ︸
≤−1

π1 π2 (µ1 − µ2)
2 (α1 π2 + α2 π1)

Var(gt+1)︸ ︷︷ ︸
>0

≤ 1.25.

B.4 Proposition 5

Consider first the Mincer and Zarnowitz (1969)-regressions, and write

Ẽt(gt+h) = π1 ((1− α1)µ1 + α1 gt) + π2 ((1− α2)µ2 + α2 gt) = µ̃+ (π1 α1 + π2 α2) gt,
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where µ̃ = π1 (1− α1) µ1 + π2 (1− α2) µ2 is the fixed component of the agent’s forecast. It

is

βMZ =
Cov(gt+h, Ẽt(gt+h))

Var
(
Ẽt(gt+h)

) =
Cov(gt+h, (π1 α1 + π2 α2) gt)

Var ((π1 α1 + π2 α2) gt)
= 0,

where the last step follows form the i.i.d. structure of endowment growth. Using βMZ = 0,

we find aMZ = π1 µ1 + π2 µ2.

Similarly, for the Coibion and Gorodnichenko (2015)-regression, note that

Ẽt(gt+h)− Et−1(gt+h) = (π1 α1 + π2 α2) (gt − gt−1) ,

and denote E(g) = µ = π1 µ1 + π2 µ2 to obtain

βGC =
Cov

[
gt+h − Ẽt(gt+h), Ẽt(gt+h)− Et−1(gt+h)

]
Var

[
Ẽt(gt+h)− Et−1(gt+h)

]
=

(π1 α1 + π2 α2) E [(gt+h − (π1 α1 + π2 α2) gt − µ+ (π1 α1 + π2 α2) µ) · (gt − gt−1)]

2 (π1 α1 + π2 α2)
2Var(g)

=
E [gt+h gt − gt+h gt−1 − (π1 α1 + π2 α2) g

2
t + (π1 α1 + π2 α2) gt gt−1]

2 (π1 α1 + π2 α2)Var(g)

=
− (π1 α1 + π2 α2) [E(g2t )− µ2]

2 (π1 α1 + π2 α2)Var(g)
= −1

2
.

Finally, using Equation 19 and noting that E
(
Ẽt(gt+h)− Et−1(gt+h)

)
= 0, it is aGC =

π1 π2 (µ2 − µ1) (α1 − α2).

B.5 Proposition 6

The results follow from inserting the cumulant-generating function given in Equation 14 into

Result 1 in Martin (2013), as shown in Section 2.3. Under Epstein and Zin (1989)-preferences,
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it is

dpt =− log(β)− log
(
π1 e

(λ−γ) µ̂1,t+ 1
2
(λ−γ)2 σ2

1 + π2 e
(λ−γ) µ̂2,t+ 1

2
(λ−γ)2 σ2

2

)
+

(
1− 1

η

)
log
(
π1 e

(1−γ) µ̂1,t+ 1
2
(1−γ)2 σ2

1 + π2 e
(1−γ) µ̂2,t+ 1

2
(1−γ)2 σ2

2

)
, (B.1)

rft =− log(β)− log
(
π1 e

−γ µ̂1,t+ 1
2
γ2 σ2

1 + π2 e
−γ µ̂2,t+ 1

2
γ2 σ2

2

)
+

(
1− 1

η

)
log
(
π1 e

(1−γ) µ̂1,t+ 1
2
(1−γ)2 σ2

1 + π2 e
(1−γ) µ̂2,t+ 1

2
(1−γ)2 σ2

2

)
, (B.2)

ert = dpt + log
(
π1 e

λ µ̂1,t+
1
2
λ2 σ2

1 + π2 e
λ µ̂2,t+

1
2
λ2 σ2

2

)
, (B.3)

rpt = log
(
π1 e

−γ µ̂1,t+ 1
2
γ2 σ2

1 + π2 e
−γ µ̂2,t+ 1

2
γ2 σ2

2

)
+ log

(
π1 e

λ µ̂1,t+
1
2
λ2 σ2

1 + π2 e
λ µ̂2,t+

1
2
λ2 σ2

2

)
− log

(
π1 e

(λ−γ) µ̂1,t+ 1
2
(λ−γ)2 σ2

1 + π2 e
(λ−γ) µ̂2,t+ 1

2
(λ−γ)2 σ2

2

)
. (B.4)

Expressions for power utility are found by setting ψ = 1
γ
, implying η = 1.

C Proofs for Section 4: Peak-end rule

In this appendix, I derive numerical approximations for the agent’s beliefs under the peak-

end rule. Recall from Section 4, the memory function under the peak-end rule is defined

as

mPE (gτ , gt) = exp

[
−e−

(gτ−µ)2

2σ2

]
exp

[
(gτ − gt)

2

2κ

]
= mP (gτ ) ·m(gτ , gt), (C.1)

where the first component mP (gτ ) := exp

[
−e−

(gτ−µ)2

2σ2

]
overweights extreme experiences

and the second component m(gτ , gt) is the similarity-weighted memory function analyzed in

Section 3 and Appendix B. Therefore, I focus on the effect of the extreme-experience bias

on the agent’s posterior beliefs in this appendix.
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C.1 Motivation of extreme experience formulation using Extreme

Value Theory

Extreme experience bias posits that humans are more likely to recall extreme events Cruciani

et al. (2011). The agent observes the realized history of i.i.d. normally distributed random

variables Ht = (gk, gk+1, ..., gt−1, gt), with k → −∞. Let gmk,t = maxHt be the maximum

in a sequence of observations of length k. The distribution of gmk,t converges to a Gumbel-

distribution (or Type-I generalized extreme value distribution) for large k.

Proof. Let Xτ =
gτ−µ
σ

have i.i.d. standard Normal distribution Xτ
i.i.d.∼ N (0, 1), with CDF

Φ(x) and PDF ϕ(x) Define X∗
n = max1≤τ≤nXτ . We search for sequences {an}, {bn} and a

limiting CDF G(z) for X∗
n−an
bn

to apply the Fisher–Tippett–Gnedenko theorem.

The CDF of X∗
n is

P(X∗
n ≤ x) = P (X1 ≤ x,X2 ≤ x, ..., Xn ≤ x) =

n∏
j=1

P (Xj ≤ n) = Φn(x).

As Xτ is unbounded, we have Φ(x) < 1 ∀x, and Φn(x) → 0 for n→ ∞. The maximum X∗
n

P→

∞. In order to achieve a non-degenerate limit, we must standardize X∗
n using (increasing)

sequences an and bn.

For x > 0, we can use the symmetry of the normal distribution to get

Φ(−x) =
∫ ∞

x

ϕ(z) dz

≤
∫ ∞

x

z

x
ϕ(z) dz =

1

x
√
2π

∫ ∞

x

z e
z2

2 dz =
1

x
ϕ(x) =

1

x
ϕ(x).

We can tighten the bound using Gordon’s Inequality as

1 ≤ ϕ(x)

xΦ(−x)
≤ 1 +

1

x2
.

Now, let an = −Φ−1
(
1
n

)
be the

(
1− 1

n

)
’th quantile and set bn = 1

an
. Using the Taylor
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rule, we find

log Φ(−an − bnz) = log Φ(an) + bn z
ϕ(−an)
Φ(−an)

+ o(bn z)

= log
1

n
− z + o(bn z).

We can then find

Pr (X1 ≤ an + bnz) = Φ(an + bnz) = 1− Φ(−an − bnz) ≈ 1− 1

n
ez,

and

Pr (X∗
n ≤ an + bnz) ≈

[
1− 1

n
ez
]n

≈ exp
(
−e−z

)
:= G(z),

with G(z) being the CDF of the Gumbel-distribution. The last approximation follows

from limn→∞
(
1 + x

n

)n
= exp(x). For {gτ}

i.i.d.∼ N (µ, σ), then we need to change an =

µ − σΦ−1(1/n) and bn = −σΦ−1(1/n) to find the Gumbel-distribution as the limit of the

standardized maximum. The CDF of the Gumbel-distribution for the maximum is

G(z;µ, σ2) = exp
(
−e−

z−µ
2σ2

)
,

and I obtain mP (gτ ) by squaring the distance in the double exponential.

C.2 Memory-weighted probability distribution

Under the assumptions of Proposition 1, the agent’s posterior will concentrate on a memory-

weighted version of the true probability distribution. I here show that such a distribu-

tion exists under extreme-experience bias by finding an integration constant A that implies∫∞
−∞mP (g) q∗(g) dg = 1. Let us consider a generalized version of the extreme-experience bias
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with m̃P (gτ ) = exp
[
−e−

(gτ−a)2
2 b

]
, and

∫ ∞

−∞
m̃P (g) q∗(g) dg =

∫
R
e−

(g−µ)2

2σ2 e−e
− (g−a)2

2 b dg

=

∫
R
e−

(g−µ)2

2σ2

∞∑
k=0

(−1)k

k!
e−k

(g−a)2
2 b dg

=
∞∑
k=0

(−1)k

k!

∫
R
e−

g2(σ2k+b)−2g(σ2 k a+µ b)+(σ2 k a2+µ2 b)
2σ2 b dg

=
∞∑
k=0

(−1)k

k!

√
2π σ2 b

σ2 k + b
e
− k

2
(µ−a)2

σ2 k+b = A−1,

where I used the series expansion of the exponential function in the first line. The integration

constant A exists and is a well-defined function of the parameters.

C.3 Numerical approximation of the subjective moments under

extreme experience bias

Restrict attention to the extreme-experience bias mP (gτ ) with a = µ and b = σ2.35 Under

this assumption, the agent is more likely to recall experiences that are further away from

the mean of the underlying growth-rate distribution while acknowledging the scale of the

underlying distribution σ2. Behaviorally, the specification implies a memory-formulation

evaluates extremess relative to the true underlying process. If the growth-rates are generated

from a more volatile process, an observation needs to be larger (in absolute terms) to be

considered extreme. Similarly, a growth-rate that is close to µ is considered ”normal” and

thus less likely to be recalled under extreme-experience biased memory.

Using this formulation, the agent’s posterior expectation of the growth-rate is

µ̂t = A

∫
R
g e−

(g−µ)2

2σ2 e−e
− (g−µ)2

2σ2 dg

35Similar results exists for more general versions with either a ̸= µ or b ̸= σ2 and are available upon
request.
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= A

∫
R
(x+ µ) e−

x2

2σ2 e−e
− x2

2σ2 dx

= A

∫
R
x e−

x2

2σ2 e−e
− x2

2σ2 dx+ µA

∫
R
e−

x2

2σ2 e−e
− x2

2σ2 dx

= A

∫
R
x e−

x2

2σ2 e−e
− x2

2σ2 dx+ µ,

where I used a change of variables and the last line follows from the definition of A (to see

this, you can reverse the substitution x = ∆c− µ). Next, let us define y = e−
x2

2σ2 to find

∫
R
x e−

x2

2σ2 e−e
− x2

2σ2 dx =

∫ 0

−∞
x e−

x2

2σ2 e−e
− x2

2σ2 dx+

∫ ∞

0

x e−
x2

2σ2 e−e
− x2

2σ2 dx

=

∫ 1

0

−σ2 e−y dy +

∫ 0

1

−σ2 e−y dy

= −σ2

(∫ 1

0

e−y dy −
∫ 1

0

e−y dy

)
= 0,

which implies that µ̂t = µ under extreme experience bias. If the agent symmetrically over-

weights the tails of the underlying distribution (which is also symmetric), she will learn the

correct mean growth rate.

Next, I approximate the perceived variance of the agent. Define u = (g−µ)√
2σ2

. It is

σ̂2
t = A

∫
R
(g − µ)2 e−

(g−µ)2

2σ2 e−e
− (g−µ)2

2σ2 dg

= A 2
√
2σ3

∫
R
u2 e−u

2

e−e
−u2

du.

In general, no closed form solution exists for the integral, but we can approximate it using

various substitutions. First, use y = e−u
2
:

∫
R
u2 e−u

2

e−e
−u2

du = 2

∫ ∞

0

u2 e−u
2

e−e
−u2

du

=

∫ 1

0

√
− ln (y) e−y dy

=
∞∑
k=0

(−1)k

k!

∫ 1

0

√
− ln (y) yk dy.
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The inner integral can be solved by using v = − ln (y) as

∫ 1

0

√
− ln (y) yk dy =

∫ 0

∞

√
v e−k v

(
dy

dv

)
dv

=

∫ ∞

0

√
ve−(k+1)v dv

=
Γ(1.5)

(k + 1)3/2

=

√
π

2 (k + 1)3/2
,

where the last lines follows by the properties of the Gamma-function for half-integers.

Putting terms together, it is

σ̂2
t = A 2

√
2σ3

∞∑
k=0

(−1)k

k!

√
π

2 (k + 1)3/2

= A
√
2π σ3

∞∑
k=0

(−1)k

k!

1

(k + 1)3/2

= σ2

∑∞
k=0

(−1)k

k!
1

(k+1)3/2∑∞
m=0

(−1)m

m!
1√
m+1

≈ σ2 · 1.4108 > σ2.

As expected, extreme experience-biased memory leads to a higher fundamental variance.

Intuitively, the agent’s memory overweights observations that are further away from the

mean of the underlying distribution. Therefore, the growth-rate process seems riskier than

it actually is under the agent’s filtration.
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C.4 Numerical approximation of the subjective moments under

peak-end rule

Let us consider the memory function defined in Equation 34. First, I show that the memory-

weighted probability distribution exists by showing that the integration constant V exists:

∫ ∞

−∞
mPE(g, gt) q

∗(g) dg =

∫
R
e−

(g−µ)2

2σ2 e−
(g−gt)

2

2κ e−e
− (g−µ)2

2σ2 dg

=

∫
R
e
−
[
(g−µ)2

2σ2
+

(g−gt)
2

2κ

] ∞∑
k=0

(−1)k

k!
e−k

(g−µ)2

2σ2 dg

=
∞∑
k=0

(−1)k

k!

∫
R
e
−
[
(1+k)

(g−µ)2

2σ2
+

(g−gt)
2

2κ

]
dg

=
∞∑
k=0

(−1)k

k!

∫
R
e−

g2((1+k)κ+σ2)−2g((1+k)κµ+σ2 gt)+((1+k)κµ2+σ2 g2t )
2σ2 κ dg

=
∞∑
k=0

(−1)k

k!

√
2 π σ2 κ

σ2 + (1 + k)κ
e
− (1+k)

2
(µ−gt)

2

(1+k)κ+σ2 = V−1,

where I used the series expansion of the exponential function in the first line. The integration

constant V exists and is a well-defined function of the parameters.

Next, we approximate the agent’s posterior mean under the peak-end rule memory func-

tion. Define the mean and variance under similarity-weighted memory (see Proposition 2)

as

µ̂St =
κµ+ σ2 gt
κ+ σ2

= (1− α)µ+ α gt

(σ̂St )
2 =

κσ2

κ+ σ2
,

with α = σ2

κ+σ2 . We can then rewrite the peak-end memory function as

mPE(gτ , gt) = e−
(gτ−µ)2

2σ2 e−
(gτ−gt)

2

2κ e−e
− (gτ−µ)2

2σ2
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= e
(µ−gt)

2

2 e
(gτ−µ̂St )2

2 (σ̂St )2 e−e
− (gτ−µ)2

2σ2 .

The agent’s posterior mean under the peak-end rule memory function can then be obtained

as

µ̂t = V e
(µ−gt)

2

2

∫
R
g e

(g−µ̂St )2

2 (σ̂St )2 e−e
− (g−µ)2

2σ2 dg

= V e
(µ−gt)

2

2

∫
R

(
x+ µ+ µ̂St

)
e
− (x+µ)2

2 (σ̂St )2 e−e
−

(x+µ̂St )2

2σ2 dx

= V e
(µ−gt)

2

2

∫
R
x e

− (x+µ)2

2 (σ̂St )2 e−e
−

(x+µ̂St )2

2σ2 dx+ µ+ µ̂St .

We cannot simplify the first integral using the same steps as in Appendix C.3, because the

function f(x) = x e
− (x+µ)2

2 (σ̂St )2 e−e
−

(x+µ̂St )2

2σ2 is, in general, not symmetric. Therefore, I approximate

the integral using the series expansion of the exponential function as

∫
R
x e

− (x+µ)2

2 (σ̂St )2 e−e
−

(x+µ̂St )2

2σ2 =
∞∑
k=0

(−1)k

k!

∫
R
x e

− (x+µ)2

2 (σ̂St )2 e−k
(x+µ̂St )2

2σ2 dx

= −
∞∑
k=0

(−1)k

k!

√
2π σ σ̂St

(σ2 + k (σ̂St )
2)3/2

(
µσ2 + k µ̂St (σ̂

S
t )

2
)
e
− k

2
· (µ−µ̂St )2

σ2+k (σ̂St )2 .

Thus, putting terms together, it is

µ̂t = µ+ µ̂St − V e
(µ−gt)

2

2

(
∞∑
k=0

(−1)k

k!

√
2π σ σ̂St

(σ2 + k (σ̂St )
2)3/2

(
µσ2 + k µ̂St (σ̂

S
t )

2
)
e
− k

2
· (µ−µ̂St )2

σ2+k (σ̂St )2

)

= µ+ µ̂St − e
(µ−gt)

2

2

∑∞
k=0

(−1)k

k!
κ+σ2

((1+k)κ+σ2)3/2

(
µ+ k κ

κ+σ2 µ̂
S
t

)
e
− k

2
· α

2 (µ−gt)
2

σ2+k (σ̂St )2

∑∞
k=0

(−1)k

k!

√
1

σ2+(1+k)κ
e
− (1+k)

2
(µ−gt)2

(1+k)κ+σ2

.

D Additional figures
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Figure D.1: First four posterior moments of endowment growth under similarity-weighted
memory

Figure D.1 shows the first four moments of endowment growth under the agent’s subjective beliefs

derived from similarity-weighted memory (solid blue line) and the true underlying values (green

dashed line). Endowment growth is distributed as in Equation 10, and the similarity-weighted

memory function is as in Equation 11. The parameters used to generate Figure D.1 are as in

Table 1.
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Figure D.2: Cumulant-generating function for different realizations of endowment growth

Figure D.2 shows the true cumulant-generating function of endowment growth K∗(k) (blue solid

line) and the agent’s subjective cumulant-generating function for a highly positive (grey dashed

line) and negative (orange dotted line) current endowment growth gt. The cumulant-generating

functions given in Equation 14. The parameters are µ1 = 0.05, µ2 = −0.05, σ1 = 0.01, σ2 = 0.02,

π1 = 0.8, and κ = 0.1. Note that for any cumulant-generating function K(0), it is K(0) = 0, such

that changes of the current endowment growth lead to a rotation of the cumulant-generating

function.
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Figure D.3: Graphical construction of the memory-weighted true probability distribution

Figure D.3 shows the graphical construction of the memory-weighted true probability

distribution. The first row shows the case of a similarity-weighted memory function, as considered

in Section 3, the middle row shows the extreme-experience bias and the bottom row shows the

peak-end memory function, which are both discussed in Section 4. The left column does always

show the true probability distribution (blue dashed line), which is a standard normal distribution,

and the respective memory function (green solid line). The right column shows the resulting

memory-weighted true probability distribution, which is scaled to integrate to one. The

memory-scrutiny parameter is κ = 0.2, and the current endowment growth is gt = 0.5.
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E Additional tables

Table E.1: Average asset pricing outcomes per quantile of log endowment growth

No parameter uncertainty Parameter uncertainty

Quantile gt µ̂t rpt rpOt gt µ̂t rpt rpOt

1 -2.965 1.740 1.211 6.421 −2.954 1.719 1.289 18.639
2 0.812 1.775 1.201 2.084 0.813 1.769 1.081 4.674
3 1.920 1.785 1.199 0.819 1.920 1.784 1.069 1.962
4 3.010 1.795 1.196 -0.423 3.011 1.798 1.070 −0.812
5 6.090 1.822 1.190 -3.913 6.090 1.839 1.060 −8.414

Table E.1 reports average endwoment growth gt, posterior mean µ̂t, subjective risk premium rpt
and objective risk premium rpOt for each quantile of endowment growth. The moments are obtained
from 10, 000 simulations of the model for 304 quarters. For the parameter uncertainty simulations,
I use 120 quarters burn-in period (30 years) and I draw 10 realizations of the agent’s memory for
each of the 10, 000 economies. All averages are annualized by multiplying quarterly means by four.

Table E.2: Predictability and Coibion and Gorodnichenko (2015)-regressions under peak-
end rule

RPSubj RPObj b̂CG

dpt −0.0002 9.5315(
Ẽt −Et−1

)
gt+1 −0.3927

Table E.2 reports the mean estimates from regressions for 10, 000 simulations of the model for 304

quarters. The first row shows the mean coefficients when regressing subjectively expected and

objectively obtained risk premia on the log dividend-price ratio, as in Nagel and Xu (2023). The

price-dividend ratio is rescaled to unit standard deviation. The second row shows the mean

estimate from Coibion and Gorodnichenko (2015)-regressions of the forecast error on the forecast

revision. The agent’s expectations are obtained under the peak-end memory distortion given in

Equation 34.

F Asset pricing model and further asset-pricing results

In this appendix, I derive the asset-pricing results in Section 2.3 following Martin (2013).

Consider the objective function in Equation 5 with ψ ̸= 136 Under this formulation, the

36All results in this section extend to the case with unit EIS, ψ = 1. One can solve the case with ψ = 1
using the recursion in Hansen et al. (2008). The consumption-wealth ratio is constant for ψ = 1, and all
other results generalize as the limit of η → ∞.
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stochastic discount factor becomes

Mt+1 = βη
(
Ct+1

Ct

)− η
ψ

(Rw,t+1)
η−1,

where the return on wealth, Rw,t+1, is

Rw,t+1 =
Ct+1 +Wt+1

Wt

=
Ct+1

Ct

(
Ct
Wt

+
Ct
Wt

Wt+1

Ct+1

)
=
Ct+1

Ct
(1 + CW ) ,

where I conjecture that the consumption-wealth ratio CW is constant under the agent’s

beliefs.37 I verify this conjecture below.

The price-dividend ratio of an asset that pays Dt = Cλ
t under the agent’s time-t beliefs

is given by

Pt
Dt

= Et

[
∞∑
j=1

βj η
(
Ct+j
Ct

)− η
ψ
(
Ct+j
Ct

)λ (
Ct+j
Ct

)η−1

(1 + CW )j (η−1)

]

=
∞∑
j=1

βj η Et

[
e(λ−γ) gt+1

]j
ej (η−1) cw =

1

e−η log(β)+(1−η) cw−Kt(λ−γ) − 1
,

if −η log(β) +(1−η) cw−Kt(λ−γ) > 0 and where I define cw = log
(
1 + C

W

)
. As in the main

text, define the log dividend-yield as dpt = log(1+ Dt
Pt
) = −η log(β)+ (1− η) cw−Kt(λ−γ).

The consumption-wealth ratio equals the dividend-price ratio for the wealth-portfolio with

λ = 1, such that

cw = − log(β)− 1

η
Kt(1− γ),

which is constant under the agent’s time-t beliefs as conjectured because the agent expects

that Kt+h(k) = Kt(k) for all h ≥ 1. The dividend-price ratio is then

dpt = − log(β) +

(
1− 1

η

)
Kt(1− γ)−Kt(λ− γ).

37Note that, by assumption, the agent knows that endowment growth is i.i.d..
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Using the constant dividend-price ratio under the agent’s beliefs, the subjective expected

return on any asset is

Ẽt [Rt+1] = Ẽt

[
Dt+1

Dt

] (
1 +

Dt

Pt

)
= Ẽt

[
eλ gt+1

]
edpt

and the log of the expected return is

ert = − log(β) +Kt(λ) +

(
1− 1

η

)
Kt(1− γ)−Kt(λ− γ).

The risk-free rate is found by setting λ = 0,

rft = − log(β) +

(
1− 1

η

)
Kt(1− γ)−Kt(−γ),

and the risk premium on any asset is

rpt = Kt(λ) +Kt(−γ)−Kt(λ− γ).

Note that, under the agent’s i.i.d. beliefs, the risk premium is independent of the elasticity of

intertemporal substitution. Moreover, since the agent recalls an infinite history of observa-

tions, she has no parameter uncertainty that could be priced under Epstein-Zin preferences

(Collin-Dufresne et al., 2016).

In addition, consider the objectively expected return under the econometrician’s filtra-

tion. It is

E (Rt+1) =
Dt

Pt
E
[
Dt+1

Dt

] (
1 + E

[
Pt+1

Dt+1

])
,

where I can no longer use the observation that the dividend-price ratio in period t equals

the dividend-price ratio in period t + 1. The exact present-value relation is non-linear in

the expected revision of the agent’s beliefs such that I apply a Campbell and Shiller (1988)
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approximation, as used in Campbell (1991). Denote the log-return on any asset as rt+1 :=

log(Rt+1). It is

rt+1 − Ẽt(rt+1) = λ (Et+1 − Et)
∞∑
j=0

p̄j gt+1+j − (Et+1 − Et)
∞∑
j=1

p̄jrt+1+j,

where p̄ = 1
1+exp( ¯p−d) ≈ 0.95 annually, see Campbell (2017). The expected log-return—

determined in equilibrium by an agent with selective and stochastic memory—is Ẽt (rt+1) =

λ Ẽt(gt+1) + dpt, such that we can rewrite the unexpected log return as

rt+1 − Ẽt(rt+1) = λ
(
gt+1 − Ẽt(gt+1)

)
− p̄

1− p̄
(dpt+1 − dpt) .

As a next step, rewrite the expected log-return using the (observable) risk-free rate to find

rt+1 − rft = λgt+1 +Kt(−γ)−Kt(λ− γ)− p̄

1− p̄
(dpt+1 − dpt) .

Taking objective expectations and noting that time-t quantities are observable then yields

E (rt+1)− rft = λE(gt+1) +Kt(−γ)−Kt(λ− γ)− p̄

1− p̄
(E (dpt+1)− dpt) ,

with

E(dpt+1) = − log(β) +

(
1− 1

η

)
E (Kt+1 (1− γ))− E (Kt+1 (λ− γ)) .

In general, we cannot obtain the expectation of the cumulant-generating function under

the agents beliefs in closed-form. Therefore, I use a second-order Taylor approximation

around M̃(k) := E (Mt+1(k)), as

E (Kt+1(k)) = E (logMt+1(k)) ≈ log
(
M̃(k)

)
+

1

2

(
E (Mt+1(k)

2)

M̃(k)2
− 1

)
.
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I now highlight how these results can be applied to the similarity-weighted memory

discussed in Section 3 of the main text.

Case 1: Log-normally distributed endowment growth

First, let us consider the case of log-normal endowment growth,

gt = µ+ σ ϵt,

where the agent learns about the mean under similarity-weighted memory. Her posterior

belief for the mean is then µt = (1− α)µ+ α gt and α = σ2/(κ+ σ2) as in the main text.

The moment-generating and cumulant-generating functions under the agent’s time-t be-

liefs are

Mt(k) = Ẽt

(
ek gt

)
= ekµt+

1
2
k2 σ2

Kt(k) = = log (Mt(k)) = kµt +
1

2
k2 σ2.

The objective expectation of the agent’s cumulant-generating function is then simply

E (Kt(k)) = k µ+
1

2
k2 σ2 = K∗(k).

Inserting into the previous equations, I find

rft = − log(β) +
1

ψ
µt −

1

2
σ2

(
γ − 1− γ

ψ

)
,

dpt = − log(β) +

(
1

ψ
− λ

)
µt −

1

2
σ2

(
γ − 1− γ

ψ
+ λ (λ− 2 γ)

)
,

rpt = λ γ σ2.

The expected risk premium under the econometrician’s objective expectations operator
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is

E (rt+1)− rft =

(
1

1− p̄
λ− p̄

1− p̄

1

ψ

)
(µ− µt) + rpt −

1

2
λ2 σ2.

Intuitively, the first term comes from the expected revision of beliefs under the econometri-

cian’s filtration. If λ > p̄ 1
ψ
, the expected risk premium will be low when the agent is too

optimistic (µt > µ). Additionally, the expected risk premium depends on the subjective risk

premium under which the agent priced the asset, and a Jensen’s inequality adjustment.

Case 2: Two-state Markov process

Next, let us consider endowment growth as in the main text,

gt = µs + σs ϵt,

where st ∈ {1, 2} follows a two-state observable Markov chain with constant transition

probabilities that ensure that endowment growth is i.i.d. Equation 14 in the main text

gives the cumulant-generating function under the agent’s beliefs. The momemt-generating

function under the agent’s beliefs follows from Mt(k) = exp [Kt(k)], and Equation 27 gives

the expected moment-generating function under the econometrician’s beliefs. Thus, the

asset-pricing quantities under Epstein-Zin preferences are given as above.

Moreover, let us use the second-order approximation of the expected cumulant-generating

function. It is

Mt+1(k)
2 =π2

1 e
2 k µ̂1,t+1+k2 σ2

1 + π2
2 e

2 k µ̂2,t+1+k2 σ2
2 + 2 π1 π2 e

k (µ̂1,t+1+µ̂2,t+1)+
1
2
k2 (σ2

1+σ
2
2),

and I find the objective expectation as

E
(
Mt+1(k)

2
)
= π1 E

[
Mt+1(k)

2|st+1 = 1
]
+ π2 E

[
Mt+1(k)

2|st+1 = 2
]
,
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with

E
[
Mt+1(k)

2|st+1 = 1
]
=π2

1

[
e2 k µ1+k

2 σ2
1 (1+2α2

1)
]
+ π2

2

[
e2 k [(1−α2)µ2+α2 µ1]+k2 σ2

2+2 k2 α2
2σ

2
1

]
+ 2 π1 π2

[
ek [(1+α2)µ1+(1−α2)µ2]+

1
2
k2 (σ2

1+σ
2
2)+ 1

2
k2 (α1+α2)2 σ2

1

]
E
[
Mt+1(k)

2|st+1 = 2
]
=π2

1

[
e2 k [(1−α1)µ1+α1 µ2]+k2 σ2

1+2 k2 α2
1σ

2
2

]
+ π2

2

[
e2 k µ2+k

2 σ2
2 (1+2α2

2)
]

+ 2 π1 π2

[
ek [(1−α1)µ1+(1+α1)µ2]+

1
2
k2 (σ2

1+σ
2
2)+ 1

2
k2 (α1+α2)2 σ2

2

]
.

We can then insert the expressions into the objectively expected risk premium to derive

numerical approximations of the expected risk premium, as done to construct Figure 2.

G Estimation and simulation procedures used in Sec-

tion 3.4

G.1 Data and estimation

In this section, I describe the data and estimation procedure that I use to obtain the param-

eters for the simulations. The parameter values are given in Table 1.

The data used to estimate the parameters of endowment growth is the quarterly nominal

consumption (nondurable and service) from BEA’s Table 7.1 from Q1 1947 until Q1 2023. I

transform the nominal data to real endowment growth taking the chain-weighted Tornqvist

index of BEA’s data into account. In addition, I use dividends to estimate the leverage

parameter λ. I obtain aggregate quarterly dividends using the lagged total market value

of the CRSP value-weighted index and the difference between returns without and with

dividends. I deflate dividends using the Consumer Price Index (CPI) series in Shiller’s

data. The average annual endowment growth is 1.77% (4.22% for dividend growth), and the

volatility of endowment growth is 1.89%.

Next, I estimate the parameters of the endowment growth process using Bayesian meth-

82



ods similar to Johannes et al. (2016). I assume a conjugate normal/inverse gamma prior for

endowment growth in each state:

p(µi, σ
2
i ) ∼ NIG(ai, Ai, bi/2, Bi/2)

p(µi|σ2
i ) ∼ N (ai, Ai σ

2
1)

p(σ2
i ) ∼ IG(bi/2, Bi/2),

and set the parameters of these distributions as

E(µi) = ai

Var(µi) = Ai
Bi

bi − 2
= AiE(σ

2
i ),

since the marginal distribution of µi is a scaled student-t distribution with p(µi) ∼ tbi(ai, Ai
Bi
bi
).

The moments of the inverse-gamma distribution are

E(σ2
i ) =

Bi/2

bi/2− 1

Var(σ2
i ) =

Bi/2

(bi/2− 1)2 (bi/2− 2)
= E(σ2

i )
2 1

bi/2− 2
.

Thus, I find the parameters as follows:

ai = E(µi)

Ai =
Var(µi)

E(σ2
i )

bi = 2
E(σ2

i )
2

Var(σ2
i )

+ 4

Bi = E(σ2
i ) (bi − 2) .

In addition, I assume that the transition probabilities are independent of the parameters of

endowment growth in each state and given by a Beta-distribution with p(π1) ∼ B(c1, C1). It
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is

E(π1) =
c1

c1 + C1

Var(π1) =
c1C1

(c1 + C1)2 (C1 + c1 + 1)

= E(π1) (1− E(π1))
1

C1 + c1 + 1

= E(π1) (1− E(π1))
1

1
E(π1)

c1 + 1

such that I find

c1 =
E(π1)

2 (1− E(π1))

Var(π1)
− E(π1)

C1 = c1

(
1− E(π1)

E(π1)

)
.

Table G.1 shows the parameters used for the estimation, which are close to the parameters

used in Johannes et al. (2016) while imposing the restriction to i.i.d. endowment growth.

Using the prior parameters given in Table G.1, I use a Markov-Chain-Monte-Carlo (MCMC)

procedure to estimate the parameters of endowment growth.

Table G.1: Prior parameters for estimation

Parameter Mean St.Dev

µ1 0.90% 0.17%
µ2 0.00% 0.87%
σ2
1 (0.49%)2 (0.29%)2

σ2
2 (2.89%)2 (1.49%)2

π1 95.40% 3.40%

Table G.1 reports parameters of the priors used to estimate the properties of an i.i.d. two state

Markov-switching process for endowment growth. The values are chosen to match the values in

Johannes et al. (2016).

Intuitively, the MCMC is solving the conjugate Bayesian posterior with the prior dis-

tributions given above. The algorithm iteratively varies the parameters of the model, and

computes the log-likelihood of the posterior on the BEA endowment growth data. I then
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select the model that has the highest log-likelihood over 10,000 iterations, which corresponds

to the Bayeisan maximum a posteriori (MAP) estimate. The parameters of the MAP are

given in Table 1.

Finally, I estimate the leverage parameter λ by regressing the aggregate log dividend

growth on the aggregate log endowment growth. We assumed that, for any asset, Dt = Cλ
t ,

such that

Dt+1

Dt

=

(
Ct+1

Ct

)λ
,

which implies

log
Dt+1

Dt

= λ gt+1,

and I consequently run the regression

log
Dt+1

Dt

= a+ b gt+1 + ϵt+1.

Empirically, I find b̂ = 3.29, which is close to the parameters used in the literature. Collin-

Dufresne et al. (2016) and Nagel and Xu (2022) use a leverage parameter λ = 3 under a

different dividend-growth process, such that I choose λ = 3 in simulations for comparability.

G.2 Parameter uncertainty

In this section, I highlight how parameter uncertainty emerges and how it affects the asset

pricing results. Since closed-form solutions exist for log-normal endowment growth, it is

instructive to analyze this case first. Thereafter, I outline how I simulate the asset pricing

quantities for the two-state Markov-switching process analyzes in Section 3.
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Case 1: Log-normally distributed endowment growth

Let consumption growth gt be given by

gt = µ+ σ ϵt ϵt
i.i.d.∼ N (0, 1).

The agent does not know the mean growth rate µ, but must learn it from the recalled obser-

vations. In any period t, she recalls |HR
t | = kt past observations of endowment growth. Her

prior for the mean endowment growth is µ ∼ N
(
µ0,

σ2

ν

)
, where ν scales the informativeness

of the prior. The Bayesian posterior of the agent is then given by

µ ∼ N
(
µt, ztσ

2
)
,

where

z−1
t = kt + ν

µt =
1

z−1
t

(
ν µ0 +

∑
τ∈rt

∆gτ

)
.

The agent is naïıve with respect to her memory distortions and thus believes that she will

surely recall kt + 1 observations next period. The agent’s perceived belief and endowment

growth dynamics are thus

gt+1 = µt +
√
1 + zt σ ϵ̃t+1

ϵt+1 =
∆ct+1 − µt√

1 + zt

z−1
t+1 = z−1

t + 1

µt+1 = µt +
zt√
1 + zt

σ ϵ̃t+1.

We can derive asset-prices under parameter uncertainty in closed form for ψ = 1. Using
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the value function iteration as in Hansen et al. (2008), the log of the wealth-consumption

ratio wct = log(Wt/Ct) is

wct =
β

1− γ
log
(
Ẽt e

(1−γ)(vct+1+gt+1)
)
.

I conjecture that wct = at +B µt, as in Collin-Dufresne et al. (2016), which yields

wct =
β

1− γ
log
(
Ẽt e

(1−γ)(at+1+B µt+1+gt+1)
)

=
β

1− γ
log

(
Ẽt e

(1−γ)
(
at+1+(B+1)µt+

(
B

zt√
1+zt

+
√
1+zt

)
σϵ̃t+1

))

= β

(
at+1 + (B + 1)µt +

1

2
(1− γ)

(
B

zt√
1 + zt

+
√
1 + zt

)2

σ2

)
.

Thus, I find that

B =
β

1− β
,

at = βat+1 +
1

2
β(1− γ) ((B + 1)zt + 1)2

1

1 + zt
σ2

=
∞∑
j=0

βj+1 1

2
β(1− γ) ((B + 1)zt+j + 1)2

1

1 + zt+j
σ2.

The log-SDF in the ψ = 1-case is then

mt+1 = log

(
β

(
Ct
Ct+1

)
V 1−γ
t+1

Ẽt

[
V 1−γ
t+1

])

= log

(
βe−∆ct+1

e((1−γ) (vct+1+gt+1))

Ẽt (e((1−γ) (vct+1+gt+1)))

)

= log

βe−∆ct+1
e((1−γ) (B µt+1+

√
1+zt σ ϵ̃t+1))

Ẽt

(
e((1−γ) (B µt+1+

√
1+zt σ ϵ̃t+1))

)


= log(β)− µt −
√
1 + zt σ ϵ̃t+1 + (1− γ) ((B + 1) zt + 1)

1√
1 + zt

σ ϵ̃t+1

− 1

2
(1− γ)2 ((B + 1) zt + 1)2

1

1 + zt
σ2
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= µm,t − µt − ζt σ ϵ̃t+1,

where

µm,t = log(β)− (1− γ)2

2
((B + 1) zt + 1)2

1

1 + zt
σ2,

ζt = [(1 + zt)− (1− γ) ((B + 1) zt + 1)]
1√

1 + zt
.

Shocks to the log SDF are thus

mt+1 − Ẽt(mt+1) = −ζt, σ ϵ̃t,

and the price of risk—defined as the conditional volatility of the log SDF—is given by

ζtσ > γ σ, which is the price of risk without parameter uncertainty.

Joint log-normality of endowment growth and the SDF then gives

0 = Ẽt(mt+1) + Ẽt(rc,t+1) +
1

2
Vart(mt+1) +

1

2
Vart(rc,t+1) + Covt(mt+1, rc,t+1),

where rc,t+1 is the log-return on the consumption-claim. Note that an EIS of ψ = 1 yields

a constant wealth-consumption ratio, WC = β
1−β , and the log-return on the consumption

claim is

rc,t+1 = log

(
Ct+1

Ct
(1 +WC−1)

)
= gt+1 − log(β)

The expected log-return on the consumption-claim is

Ẽt(rc,t+1) = µt − log(β) = − Ẽt(mt+1)−
1

2
Vart(mt+1)−

1

2
Vart(rc,t+1)− Covt (mt+1, rc,t+1)
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The log risk-free rate is

rft = − Ẽt(mt+1)−
1

2
Vart(mt+1)

= µt − log(β)− 1

2
(1 + zt)σ

2 + (1− γ) [(B + 1)zt + 1] σ2,

and the risk premium on the consumption-claim is

Ẽt(rc,t+1)− rft = −1

2
Vart(rc,t+1)− Covt(mt+1, rc,t+1)

= −1

2
(1 + zt)σ

2 + [(1 + zt) + (γ − 1)((B + 1)zt + 1)] σ2

= (γ − 1)B ztσ
2 +

(
γ − 1

2

)
(zt + 1)σ2.

Alternatively, and as in the main text, let us consider the expected return on the

consumption-claim as

Ẽt (Rc,t+1) = Ẽt (e
rc,t+1) =

1

β
eµt+

1
2
(1+zt)σ2

,

and the log of the expected return is

erc = log(Ẽt (Rc,t+1)) = Ẽt (e
rc,t+1) = − log(β) + µt +

1

2
(1 + zt)σ

2.

The risk premium on the consumption-claim is then

erc − rft = − log(β) + µt +
1

2
(1 + zt)σ

2 − µt + log(β) +
1

2
(1 + zt)σ

2 − (1− γ) [(B + 1)zt + 1] σ2

= (1 + zt)σ
2 − (1− γ) [(B + 1)zt + 1] σ2.

Next, let us derive objective risk premium by taking the expectation of the return on

the consumption-claim. The econometrician knows the true underlying process, such that
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E(Rc,t+1) =
1
β
eµ+

1
2
σ2

and the objective risk premium is

log(E(Rc))− rft = (µ− µ̂t)︸ ︷︷ ︸
Belief wedge

+(1 + zt) σ
2 − (1− γ) [(B + 1)zt + 1] σ2︸ ︷︷ ︸
Subjective risk premium

−1

2
zt σ

2︸ ︷︷ ︸
Jensen’s inequality

The objective risk premium depends on three components: First, the wedge between the

true mean endowment growth and the agent’s expectation, (µ− µ̂). Intuitively, if the agent’s

posterior mean µ̂t is too high, the agent drives up the price of the asset and objective returns

next period will be low. The second component is the agent’s subjective risk premium,

which determines prices in equilibrium and thus therewith affect expected returns. The

third component is a Jensen’s inequality adjustment. We can similarly derive the objective

risk premium on the dividend-paying asset.

Case 2: Markov-process

Let us now consider the Markov process for endowment growth as in Equation 10. Closed-

form solutions for asset prices with parameter uncertainty cease to exist, such that I detail

the numerical procedure to obtain asset pricing equations in this Appendix. The procedure

follows Collin-Dufresne et al. (2016).

The agent knows the state-dependent variance σ2
s , but must learn the state-dependent

means µs from her recalled history of log endowmentgrowth. In period t, the agent recalls

|HR
1,t| = k1,t endowment growth observations from state 1 and |HR

2,t| = k2,t observations

from state 2 and forms a Bayesian posterior about the mean in each state. The agent has

conjugate, normally distributed prior beliefs about the state-dependent mean growth-rates,

µs ∼ N
(
µ̂s,0,

σ2
s

νs

)
, where νs scales the informativeness of the prior. The agent’s posterior

upon recalling the state-dependent history HR
s,t is

µ ∼ N
(
µ̂s,t, zs,t σ

2
s

)
,
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with

zs,t = (ks,t + νs)
−1 ,

µ̂s,t = zs,t

νs µ̂s,0 + ∑
τ∈HR

s,t

gτ

 .

The agent’s perceived dynamics of endowment and her beliefs are38

gt+1 = µ̂s,t +
√

1 + zs,t σs ϵ̃t+1

z−1
t+1,s = z−1

s,t + 1st+1=s

µ̂t+1,s = µs,t + 1st+1=s
zs,t

1 + zs,t
(gt+1 − µs,t) ,

where 1a=b equals one if the condition in subscript is true and the belief about the state

that does not occur in the next period is not updated. The state variables that describe

the agent’s beliefs are Xt ≡ [µ1,t, µ2,t, k1,t, k2,t], and the state of the Markov chain st is an

additional state variable of the economy.

The agent has Epstein-Zin preferences, such that the SDF (for ψ ̸= 1) is

Mt+1 = βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
w,t+1,

where θ = 1−γ
1− 1

ψ

is a composite parameter and Rw,t+1 = Wt+1+Ct+1

Ct
is the return on wealth.

The return on wealth is determined in equilibrium as

Ẽt

[
βθ
(
Ct+1

Ct

)− θ
ψ

Rθ
w,t+1

]
= 1,

38I relate the discussion thus far to the memory model in the main text as follows: In each period, the
recalled experiences are drawn from selective memory, but the agent forms beliefs under näıvete, such that
her perceived endowment and belief dynamics do not take her memory distortion into account. Thus, in
period t, the agent thinks that she is a rational Bayesian and forecasts her belief evolution consistently.
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which, when inserting the expression for the return on wealth, yields

(
Wt

Ct

)θ
= βθ Ẽt

[
e(1−γ) gt+1

(
Wt+1

Ct+1

+ 1

)θ]
.

Note that the wealth-consumption ratio at time t is a function of the state variables

at time t. Writing Wt+1

Ct+1
= WCt+1, it is WCt+1 = WC(Xt+1, st+1) = WC(Xt, st+1, gt+1),

where the last step clarifies that the evolution of the state variables under the agent’s beliefs

depends on next period’s state and on the realized endowment growth.

Under a two-state Markov process with known transition probabilities, the expression for

the wealth-consumption ratio can be rewritten as

WC(Xt, st)
θ = βθ π1 Ẽt

(
e(1−γ) gt+1 (WC(Xt, st+1, gt+1) + 1)θ |st+1 = 1, st, Xt

)
+

βθ π2 Ẽt

(
e(1−γ) gt+1 (WC(Xt, st+1, gt+1) + 1)θ |st+1 = 2, st, Xt

)
,

where I separate the expectation using the law of iterated expectations. For the conditional

inner expectations, we do not have closed-form solutions. The expression needs to be eval-

uated numerically, and I proceed as follows: As a first step, I find the wealth-consumption

ratio for the known parameters case with zt = 0. Note that (perceived) endowment growth

is i.i.d., such that I can use the results from the main text to obtain:

WC∞ =
β e

1
θ
K(1−γ)

1− β e
1
θ
K(1−γ)

,

where K(m) = log Ẽt (e
mgt+1) is the cumulant-generating function under the agent’s beliefs.

As a second step, I solve for the boundary case where one mean is known (no parameter

uncertainty) and the other mean is unknown. Let us assume that the agent has no parameter

uncertainty around µ̂1,∞ and thus she does not learn when state 1 realizes. The wealth-
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consumption ratio is then

WC(Xt, st)
θ = βθ π1 e

(1−γ)µ̂1,∞+ 1
2
(1−γ)2 σ2

1 (WC(Xt, st) + 1)θ+

βθ π2 Ẽt

(
e(1−γ) gt+1 (WC(Xt, st+1, gt+1) + 1)θ |st+1 = 2, st, Xt

)
.

We need to integrate out two sources of uncertainty under the agent’s belief: The noise

in endowment growth ϵ̃t+1 and the agent’s uncertainty about her posterior mean µ̂2,t if state

2 occurs. I iterate backwards from the known parameter case and use a Gauss-Hermite

quadrature to approximate the expectation. The numerical approximation for the expecta-

tion is

Ẽt

(
e(1−γ) gt+1 (WC(Xt, st+1, gt+1) + 1)θ |st+1, st, Xt

)
≈

J∑
j=1

ωϵ(j)
K∑
k=1

ωµ2,t(k)
(
e(1−γ) gt+1 (WC(Xt, st+1, gt+1) + 1)θ |st+1 = 2, st, Xt

)
,

where wϵ(j) is the quadrature weight for the standard-normal variable ϵ̃t+1, corresponding to

the quadrature point nϵ(j), and ωµ2,t(k) is the quadrature weight for the normally distributed

posterior mean corresponding to quadrature point nµ2,t(k). The realized endowment growth

in state 2 is then given by

gt+1(k, j) = nµ2,t(k) + σs nϵ(j),

since the uncertainty about the mean that affects the perceived endowment growth is inte-

grated out. Having solved for the inner expectation, I find WC(Xt, st) as the fixed-point of

the non-linear equation above.

As a third step, I iterate backwards from the boundary cases using the same quadrature-

type method to approximate the agent’s expectation. Since I find both inner expectations

numerically, I do not need to solve for a fixed-point in order to find WC(Xt, st).

Similarly, I can obtain the prices of dividend-paying assets. Recall that the return on
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any asset is, by definition,

Rt+1 =
Pt+1 +Dt+1

Pt
=
Dt

Pt

Dt+1

Dt

(
Pt+1

Dt+1

+ 1

)
= eλ gt+1

PD(Xt, st+1, gt+1) + 1

PD(Xt, st)
,

where I used Pt+1

Dt+1
= PD(Xt+1, st+1) = PD(Xt, st+1, gt+1), as before. In equilibrium, we find

the return on any asset as

1 = Ẽt [Mt+1Rt+1]

= Ẽt

[
βθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
w,t+1Rt+1

]
.

Inserting, we thus can write the price-didend ratio of any asset as

PD(Xt, st) =β
θ Ẽt

[
e(λ−γ) gt+1

(
WC(Xt+1, st+1) + 1

WC(Xt, st)

)θ−1

(PD(Xt, st+1, gt+1) + 1)

]

=βθ π1 Ẽt

[
e(λ−γ) gt+1

(
WC(Xt+1, st+1) + 1

WC(Xt, st)

)θ−1

(PD(Xt, st+1, gt+1) + 1) |st+1 = 1

]
+

βθ (1− π1) Ẽt

[
e(λ−γ) gt+1

(
WC(Xt+1, st+1) + 1

WC(Xt, st)

)θ−1

(PD(Xt, st+1, gt+1) + 1) |st+1 = 2

]
.

We can thus solve for the price-dividend ratio of any asset in the same way as we did for the

wealth-consumption ratio.

In the main text, I analyzed the following asset pricing quantities under the agent’s

subjective beliefs:

ert = log
(
Ẽt Rt+1

)
rft = log

(
Ẽt R

f
t+1

)
rpt = ert − rft ,
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as well as the following objective quantity

rpot = log (ERt+1)− rft .

Using the wealth-consumption ratio and the price-dividend ratio as above, we can obtain

the asset pricing quantities as follows:

rft = log

[
Ẽt

(
PD(Xt+1, st+1|λ = 0) + 1

PD(Xt, st|λ = 0)

)]
,

ert = log

[
Ẽt

(
eλ gt+1

PD(Xt+1, st+1) + 1

PD(Xt, st)

)]
,

where we obtain the price-dividend ratio of the riskless asset as above, and need to numeri-

cally approximate the expected return under the agent’s beliefs using the same methods as

before. The subjective risk premium is then found as the difference between the log expected

return and the risk-free rate. Finally, I obtain the objective risk premium from the realized

asset returns (objective expectations equal the average realized return). I simulate the en-

dowment growth process multiple times. Having obtained the price-dividend ratio above, I

can then compute the price of the asset in period t as PD(Xt, st)Dt = PD(Xt, st)C
λ
t . The

realized return is found using the definition of the return as Rt+1 =
Pt+1+Dt+1

Pt
.
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Online Appendix

OA.1 Selective memory for continuous distributions

In this Online Appendix, I introduce the learning framework of Section 2 for the case of a

continuous outcome distribution.

Economy. Let us assume that the realized signal st = s induces a fixed and i.i.d. density

q∗s of log endowment growth g, such that Pr (g ∈ [a, b]) =
∫ b
a
q∗s(g) dg conditional on st = s.

The density q∗s ∈ D, where D is the set of densities over R.1 I maintain the assumption

that q∗s belongs to the family of parametric probability densities, q∗s ∈ {qθ : θ ∈ Θ}, with

Θ ⊆ Rk, k ∈ N closed and convex.

Learning. To model uncertainty about the distribution of log endowment growth, I

assume that the agent holds a prior belief b0 over potential densities q ∈ DS, where
∫ b
a
qs(g) dg

gives the probability of observing gt ∈ [a, b] under density qs, and q assigns one density to

every signal realization s ∈ S. The support of the prior contains all distributions that the

agent initially considers possible. I assume that the agent knows that log endowment growth

is generated by a parametric distribution, such that the prior support Q ⊆ {qθ : θ ∈ Θ}S ⊂

DS. The assumptions on the prior from Section 2 continue to hold.2

Memory. The assumptions on the memory function remain as in the main text. The

memory-function is applied to the densities, and m(gt,st) : R× S 7→ [0, 1].

Beliefs The agent forms Bayesian beliefs conditional on her recalled experiences, and

Equation (1) determines the agent’s beliefs.

Define the continuous memory-weighted likelihood maximizer conditional on this period’s

1Formally, let us consider the probability space (Ω,F , P ) and the measurable space (A,B), with A ⊆ R
and B the respective Borel σ-algebra. Endowment growth is a measurable function that maps from Ω to A,
gt : Ω 7→ A. The density q∗s is then constructed from the probability measure assigned to the preimage of

each interval [a, b] under gt as P (g−1
t ((a, b))) =

∫ b

a
q∗s (gt) dgt, the image measure. The set of all densities

D is the set of all measureable functions υ : Ω 7→ R that are non-negative almost everywhere and satisfy∫
Ω
υ(x) dx = 1.
2The agent is correctly specified, q∗ ∈ Q and all measures in the prior support are mutually absolutely

continuous. Consequently, each measure in the prior support can be obtained from any other measure by a
Radon-Nikodym derivative.
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experience as

LMc(gt, st) = argmax
q∈Q

∑
s∈S

ψ(s)

∫ ∞

−∞
m(gt,st)(g, s) q

∗
s(g) log qs(g) dg.

The following proof shows that the agent’s belief concentrates on data-generating pro-

cesses that maximize the likelihood of the recalled history as given by LMc(gt, st).

Proof. The proof follows the arguments presented in Fudenberg et al. (2023) and proceeds

as follows: First, I show that the histogram of the agent’s recalled experiences converges

to the memory-weighted true probability density. Second, following Berk (1966), I argue

that the agent’s Bayesian posterior concentrates on maximizers of the (log-)likehood. Last,

I show that the recalled history is almost surely large, such that the convergence results are

meaningful. Combining those steps yields Proposition .

Step 1 : Recall the notation. The history of experiences isHt = {(gτ , sτ )}tτ=−∞. The agent

recalls the experience from period τ ≤ t with probability m(gs,tt)(gτ , sτ ) ∈ [0, 1]. The recalled

periods rt are therefore a random subset of all experiences that occurred with distribution

P [rt|Ht, gt, st] =
∏

τ∈rtm(gs,tt)(gτ , sτ )
∏

τ /∈rt

(
1−m(gs,tt)(gτ , sτ )

)
. Define the empirical joint

distribution function of recalled growth rates and signals as

F̂t(g, s) =
1

|HR
t |
∑
τ∈rt

1{gτ ≤ g, sτ ≤ s},

while the true joint distribution function of experiences is given by F (g, s). Without memory

selectivity,m(gs,tt)(gτ , sτ ) = c ∈ [0, 1]∀(gτ , sτ ), the Glivenko-Cantelli lemma3 ensures uniform

almost sure convergence of the empirical joint distribution, F̂t(g, s), to the true distribution,

F (g, s) as t→ ∞:

sup
g∈R,s∈S

∣∣∣F̂t(g, s)− F (g, s)
∣∣∣ a.s.→ 0.

3Formally, the Glivenko-Cantelli lemma holds for univariate distribution, but its extension to multivariate
distribution follows from the generalizations by Vapnik–Chervonenkis, see Shorack and Wellner (1986).
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Adopting the proof of the Glivenko-Cantelli lemma, I now show that, in general, the empirical

distribution of recalled experiences converges to the memory-weighted distribution. By the

strong law of large numbers, the empirical joint distribution F̂t(g, s) converges pointwise to

m(gs,tt)(g, s) · F (g, s), that is

F̂t(g, s)−m(gs,tt)(g, s) · F (g, s)
a.s.→ 0.

The convergence is also uniform. Denote Fm,t(g, s) = m(gs,tt)(g, s) · F (g, s) and fix a grid of

two-dimensional points xj = (gj, sj), j = 1, ...,m with xj < xj+1 and such that Fm,t(xj) −

Fm,t(xj−1) = 1
m
. For all x ∈ R × S, it exists a k ∈ {1, ...,m} such that x ∈ [xk−1, xk]. It

must then hold that

F̂t(x)− Fm,t(x) ≤ F̂t(xk)− Fm,t(x) ≤ F̂t(xk)− Fm,t(xk−1) = F̂t(xk)− Fm,t(xk) +
1

m

F̂t(x)− Fm,t(x) ≥ F̂t(xk−1)− Fm,t(x) ≤ F̂t(xk−1)− Fm,t(xk) = F̂t(xk−1)− Fm,t(xk)−
1

m
.

Consequently,

sup
x∈R×S

∣∣∣F̂t(x)− Fm,t(x)
∣∣∣ ≤ max

k∈{1,...,m}

∣∣∣F̂t(xk)− Fm,t(xk)
∣∣∣+ 1

m
.

However, maxk∈{1,...,m}

∣∣∣F̂t(xk)− Fm,t(xk)
∣∣∣ a.s.→ 0 by the pointwise convergence that follows

from the strong law of large numbers and we can guarantee that for any ϵ > 0 andm such that

1/m < ϵ, we find a T such that for all t ≥ T we have maxk∈{1,...,m}

∣∣∣F̂t(xk)− Fm,t(xk)
∣∣∣ ≤ ϵ− 1

m
,

which establishes almost sure convergence.

We have established that the empirical joint (cumulative) distribution converges uni-

formly to the true joint distribution. As a next step, I show that also the empirical density

converges. Since the distribution of signals is known, I focus on the marginal density of

endowment growth, but the argument extends to the joint density. Define a partition of the
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real line dk such that dk+1 − dk = h. The histogram of growth rates is then

f̂t(g) =
∑
s∈S

F̂t(dk+1, s)− F̂t(dk, s)

h
,

for g ∈ [dk+1, dk]. Note that the marginal memory-weighted distribution of endowment

growth, fm,g(g), is (Lipschitz-)continuous and finite by assumption. If we let h → 0, the

continuity of the marginal distribution and the mean-value theorem ensure that E
(
f̂t(g)

)
→

fm,g(g) as |HR
t | → ∞. Thus, the empirical histogram of growth rates is an unbiased estima-

tor of the memory-weighted density. Moreover, note that the histogram of recalled experi-

ences becomes deterministic for |HR
t | → ∞, since Var

(
f̂t(g)

)
= Pr(dk≤g≤dk+1) (1−Pr[dk≤g≤dk+1])

|HR
t |h2 .

These properties of the empirical histogram of recalled growth rates imply that

f̂t(g)
p→ fm,g(g).

The agent’s recalled growth rates converges in probability to the memory-weighted version

of the true probability density, since the density exists by construction of D. Moreover, if

we restrict the set D to the class of uniformly integrable random variables, as considered in

the applications of this paper, then the empirical density is uniformly integrable.

Step 2 : As a next step, I show that the agent’s posterior beliefs concentrate on those

elements of the prior that maximize the likelihood. Intuitively, the Bayesian posterior is pro-

portional to the prior times likelihood, but the prior is ”washed out” for t→ ∞. The agent’s

beliefs thus concentrate on distributions that maximize the likelihood (see the Bernstein-von-

Mises theorem).

For a many recalled observations |HR
t | → ∞, the log-likelihood of recalled experiences

under a given distribution q ∈ Q is

log

(∏
τ∈rt

qsτ (gτ )

)
=
∑
s∈S

ψ(s)

∫ ∞

−∞
|HR

t | f̂t(g) log qs (g) dg

99



= |HR
t |
∑
s∈S

ψ(s)

∫ ∞

−∞
fm,g(g) log qs (g) dg

= |HR
t |
∑
s∈S

ψ(s)

∫ ∞

−∞
m(gs,tt)(g, s) q

∗
s(g) log qs (g) dg

= |HR
t |L(q,HR

t ),

where I used the convergence of the empirical density f̂t(g) to the memory-weighted true

density from Step 1, and denote the log-likelihood of model q given the recalled history HR
t

by L(q,HR
t ).

From Equation 1, the posterior odds ratio of two models q, q′ ∈ Q is given by

∏
τ∈rt qsτ (gτ ) b0(q)∏
τ∈rt q

′
sτ (gτ ) b0(q

′)
= ρ

exp
[
log
∏

τ∈rt qsτ (gτ )
]

exp
[
log
∏

τ∈rt q
′
sτ (gτ )

]
= ρ exp

[
|HR

t |
(
L(q,HR

t )− L(q′, HR
t )
)]
.

The prior odds ratio, ρ = b0(q)
b0(q′)

, is fixed. However, for L(q,HR
t ) > L(q′, HR

t ), the posterior

odds ratio diverges to ∞ for |HR
t | to∞, since the probability of model q′ being correct goes to

zero. Similarly, if L(q,HR
t ) < L(q′, HR

t ), the posterior odds ratio converges to 0 because the

probability of q being correct goes to 0. Therefore, the agent’s posterior beliefs concentrate

on the maximizers of the memory-weighted likelihood as given in Equation 2. If the prior

support contains the memory-weighted density, the agent’s beliefs will then concentrate on

the memory-weighted density.

Step 3 : Last, I show that indeed |HR
t | → ∞ for t → ∞, which follows from claim 1 in

Fudenberg et al. (2023). The proof is replicated here for completeness. Formally, I want to

show that for all v̂ ∈ N and k ∈ N, P
(
|HR

t | ≤ k,∀v ≥ v̂
)
= 0. For j ∈ N, it is

P
(
|HR

t | ≤ k, ∀v ∈ {v̂, v̂ + j}
)

=

v̂+j∏
τ=v̂

∑
h∈Hτ−1

P [h]
(
1− P

[
|HR

τ | > k|h
])
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≤
v̂+j∏
τ=v̂

P [{h ∈ Hτ−1 : |h| ≤ k}] +
∑

h∈Hτ−1:|h|>k

P [h]
(
1− P

[
|HR

τ | > k|h
]) .

Now, note that ∀h ∈ Hτ−1 : |h| > k and for all objective histories H, there exists a constant

l ≤ 1 such that P
[
|HR

τ | > k|h
]
≤ l, such that

v̂+j∏
τ=v̂

P [{h ∈ Hτ−1 : |h| ≤ k}] +
∑

h∈Hτ−1:|h|>k

P [h]
(
1− P

[
|HR

τ | > k|h
])

≤
v̂+j∏
τ=v̂

P [{h ∈ Hτ−1 : |h| ≤ k}] +
∑

h∈Hτ−1:|h|>k

P [h] (1− l)


=

v̂+j∏
τ=v̂

(
P [{h ∈ Hτ−1 : |h| ≤ k}] + (1− l) (1− P [{h ∈ Hτ−1 : |h| ≤ k}])

)

=

v̂+j∏
τ=v̂

1− l + l P [{h ∈ Hτ−1 : |h| ≤ k}]).

For a sufficiently large v̂ and for all v > v̂, the probability of histories having less than k obser-

vations is smaller than 1, or P [{h ∈ Hτ−1 : |h| ≤ k}] < 1, implying that−l+l P [{h ∈ Hτ−1 : |h| ≤ k}] <

0. Since 1− x ≤ e−x for all x ∈ R, it is

v̂+j∏
τ=v̂

1− l + l P [{h ∈ Hτ−1 : |h| ≤ k}]) ≤
v̂+j∏
τ=v̂

exp

(
−l + l P [{h ∈ Hτ−1 : |h| ≤ k}]

)

= exp

v̂+j∑
τ=v̂

(
−l + l P [{h ∈ Hτ−1 : |h| ≤ k}]

)
,

such that

lim
j→∞

P
(
|HR

t | ≤ k,∀v ∈ {v̂, v̂ + j}
)
≤ lim

j→∞
exp

v̂+j∑
τ=v̂

(
−l + l P [{h ∈ Hτ−1 : |h| ≤ k}]

)
= 0,

which shows the claim that HR
t → ∞ almost surely for t→ ∞.
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OA.2 Extensions

OA.2.1 Similarity-weighted memory and log-normal endowment growth

In this Appendix, I briefly discuss the implications of similarity-weighted memory if the

endowment growth process is log-normal. I first highlight the implications of similarity-

weighted memory for the agent’s subjective beliefs, to then discuss the implications for asset

prices.

Consider the framework in Section 3 with µ1 = µ2 and σ1 = σ2, such that

gt = µ+ σϵt, ϵt
i.i.d.∼ N (0, 1).

The agent learns about both parameters of endowment growth, the mean and the volatility,

from her recalled observations. The agent’s memory is distorted by the similiarty-weighted

memory function in Equation 11.

The agent’s long-term beliefs are as in Proposition 2, with

µ̂t = (1− α)µ+ α gt, and

σ̂2
t = (1− α)σ2,

where α = σ2

κ+σ2 . The dynamics of the agent’s posterior mean are as in Section 3, but the

agent’s posterior variance is always smaller than the fudamental variance because α ∈ (0, 1).

Intuitively, under similarity-weighted memory, the agent is more likely to recall growth rates

that are close to gt, while the agent does not recall growth rates that are further in the

tail of the distribution. In line with Proposition 1, the covariance between the distance of

endowment growth from the subjective location parameter µ̂t and the probability of recall

is negative under similarity-weighted memory, such that σ̂2
t < σ2. Moreover, the agent’s

posterior variance is not time-varying if endowment growth is log-normally distributed.

The cumulant-generating function of endowment growth under the agent’s time-t belief
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is then given by

KSL
t (k) = log Ẽt

(
ek gt+1

)
= k µ̂t +

1

2
k2 σ̂2

t = α k gt︸ ︷︷ ︸
Time-varying

+(1− α)

[
k µ+

1

2
k2 σ2

]
︸ ︷︷ ︸

Fixed

.

The subjective cumulant-generating function under similarity-weighted memory consists of

two components: This period’s endowment growth gt—which receives weight α, and the true

cumulant-generating function of endowment growth, with weight (1− α).

As a next step, I simulate the model 10, 000 times for 304 quarters and report average

moments in Table 4. The parameters of the endowment growth process are as in Nagel and

Xu (2022) with a quarterly mean endowment growth of µ = 0.44% and a quarterly volatility

of σ = 1.31%. All other parameters are as in Table 1.

Table OA.1: Asset prices under similarity-weighted memory and log-normal endowment
growth

Symbol Mean Std. Corr. with gt

Endowment growth and subjective beliefs
gt 1.758 2.618 1.000
µ̂t 1.760 0.044 1.000
σ̂t 2.598 0.000 0.000
Subjective asset prices
ert 3.980 0.029 1.000

rft 1.956 0.059 1.000
rpt 2.205 < 0.001 −0.004
Objective asset prices
rpt 1.724 13.414 −1.000

Table OA.1 reports the model moments obtained from 10, 000 simulations of the model for 304

quarters. I annualize the quantities as follows: Means are multiplied by four and the standard

deviations are multiplied by two. For the risk-free rate, I multiply the quarterly mean and the

standard deviation by four.

The simulation results in Table OA.1 highlight that the agent’s posterior mean is an

unbiased estimate of the true mean endowment growth, while the agent’s posterior variance

is lower than the fundamental variance and constant over time. The asset pricing implications

are as discussed in the main text, but the subjective risk premium is almost constant due to
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the constant posterior variance.

OA.2.2 State-dependent similarity-weighted memory

In this Appendix, I consider the effect of similarity-weighted memory if similarity also de-

pends on the observable state. I focus on the implications of similarity-weighted memory on

the agent’s beliefs.

Assume that endowment growth is as in Section 3, but the memory function differs from

that in Section 3 and is given by

mS
(gt,st) (gτ , sτ ) = exp

[
− (gτ − gt)

2

(2− |st − sτ |)κ

]
. (.1)

If st = sτ , the memory function is as in Equation 11. On the contrary, if st ̸= sτ , the memory

function is exp
[
− (gτ−gt)2

κ

]
. Under the memory function in Equation .1, the agent is more

likely to remember past growth rates that are closer to today’s endowment growth rate, and

to remember growth rates that occurred in the same state as today’s state.

Since the agent’s recalled experiences consist of (gτ , sτ ), we can proceed case-wise and

analyze the agent’s posterior beliefs conditional on today’s state. It is

µ̂1,t = µ1 +


σ2
1

σ2
1+κ

(gt − µ1) if st = 1

2σ2
1

2σ2
1+κ

(gt − µ1) if st = 2

, and

µ̂2,t = µ2 +


2σ2

2

2σ2
2+κ

(gt − µ2) if st = 1

σ2
2

σ2
2+κ

(gt − µ2) if st = 2

.

Note that 2σ2
s

2σ2
s+κ

>
σ2
2

σ2
2+κ

, such that the effect of similarity is stronger for the posterior mean

about the state that is not currently observed. Thus, although the framework is i.i.d., we

expect to observe predictable changes in the agent’s posterior mean belief conditional on the

current state even holding gt fixed. In addition, the conditional posterior variance of the

104



agent is given by

σ̂2
1,t = σ2

1 ·


κ

κ+σ2
1

if st = 1

2κ
κ+2σ2

1
if st = 2

,

σ̂2
2,t = σ2

2 ·


2κ

κ+2σ2
2

if st = 1

κ
κ+σ2

2
if st = 2

.

Again, since similarity-based selectivity is stronger for the state that is currently not occur-

ring, the agent’s posterior variance of endowment growth in the “other” state is smaller than

her posterior variance of endowment growth in the current state.

105


	Introduction
	Beliefs and asset prices under a general selective memory distortion
	Learning framework
	Subjective long-term beliefs
	Asset pricing framework

	Similarity-weighted memory
	Structural assumptions
	Long-term beliefs
	Asset pricing implications
	Calibration and simulation

	Peak-end memory
	Framework
	Subjective long-term beliefs and asset prices

	Conclusion
	Proofs for Section 2
	Appendix A
	Proposition 1


	Proofs for Section 3
	Appendix B
	Proposition 2
	Proposition 3
	Proposition 4
	Proposition 5
	Proposition 6

	Proofs for Section 4: Peak-end rule
	Motivation of extreme experience formulation using Extreme Value Theory
	Memory-weighted probability distribution
	Numerical approximation of the subjective moments under extreme experience bias
	Numerical approximation of the subjective moments under peak-end rule

	Additional figures
	Appendix D
	Additional tables

	Appendix E
	Asset pricing model and further asset-pricing results
	Estimation and simulation procedures used in Section 3.4
	Appendix F
	Data and estimation
	Parameter uncertainty

	Online Appendix
	Selective memory for continuous distributions
	Extensions
	Similarity-weighted memory and log-normal endowment growth
	State-dependent similarity-weighted memory




